IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1532-d152137.html
   My bibliography  Save this article

Static and Dynamic Networking of Smart Meters Based on the Characteristics of the Electricity Usage Information

Author

Listed:
  • Yaxin Huang

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Yunlian Sun

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Shimin Yi

    (Guangdong Power Grid Co., Ltd., Guangzhou 510620, China)

Abstract

The normal communication between smart meter and concentrator is a key factor influencing the normal function of users’ power consumption systems. To solve the communication failure of the smart meter caused by the signal conflict as well as the collected consecutive information abnormality from the same smart meter, according to the chain optimization index, the networking method of static and dynamic combination proposed in this paper is first used to picked out the optimal relay for a smart meter belonging to multiple relay communication ranges. Meanwhile, the communication with other secondary relays is closed to avoid signal conflict. Then the paper forms different combinations of collected data and these combinations are trained in the extreme learning machine (ELM) to find the characteristics value of power consumption information. Finally, in MATLAB simulation, if ELM detects the abnormal information, new communication path could be promptly found through dynamic adjustment of chain optimization weighted coefficient and the weighted coefficient of the number of the relayed smart meters. It solves the problem of consecutive information abnormality from the same smart meter and raises the reliability of smart meter’s communication, having a significantly meaning to guarantee the normal function of users’ power consumption system.

Suggested Citation

  • Yaxin Huang & Yunlian Sun & Shimin Yi, 2018. "Static and Dynamic Networking of Smart Meters Based on the Characteristics of the Electricity Usage Information," Energies, MDPI, vol. 11(6), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1532-:d:152137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan-Uk Yeom & Keun-Chang Kwak, 2017. "Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge Representation," Energies, MDPI, vol. 10(10), pages 1-18, October.
    2. Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2014. "Probabilistic modeling and assessment of the impact of electric heat pumps on low voltage distribution networks," Applied Energy, Elsevier, vol. 127(C), pages 249-266.
    3. Fereshteh Modaresi & Shahab Araghinejad & Kumars Ebrahimi, 2018. "A Comparative Assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K-Nearest Neighbor Regression for Monthly Streamflow Forecasti," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 243-258, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Sun & Chongchong Zhang, 2018. "A Hybrid BA-ELM Model Based on Factor Analysis and Similar-Day Approach for Short-Term Load Forecasting," Energies, MDPI, vol. 11(5), pages 1-18, May.
    2. Fraga, Carolina & Hollmuller, Pierre & Schneider, Stefan & Lachal, Bernard, 2018. "Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands," Applied Energy, Elsevier, vol. 225(C), pages 1033-1053.
    3. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    4. Pin-Chun Huang & Kuo-Lin Hsu & Kwan Tun Lee, 2021. "Improvement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1079-1100, February.
    5. Nicole Durfee & Carlos G. Ochoa & Gerrad Jones, 2021. "Stream Temperature and Environment Relationships in a Semiarid Riparian Corridor," Land, MDPI, vol. 10(5), pages 1-22, May.
    6. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    7. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
    8. Navarro-Espinosa, Alejandro & Thomas-Galán, Mauricio, 2023. "Firewood electrification in Chile: effects on household expenditure and energy poverty," Energy Policy, Elsevier, vol. 173(C).
    9. Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    10. Moghaddam, Iman Gerami & Saniei, Mohsen & Mashhour, Elaheh, 2016. "A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building," Energy, Elsevier, vol. 94(C), pages 157-170.
    11. Mejia, Mario A. & Melo, Joel D. & Zambrano-Asanza, Sergio & Padilha-Feltrin, Antonio, 2020. "Spatial-temporal growth model to estimate the adoption of new end-use electric technologies encouraged by energy-efficiency programs," Energy, Elsevier, vol. 191(C).
    12. Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
    13. Meunier, Simon & Protopapadaki, Christina & Baetens, Ruben & Saelens, Dirk, 2021. "Impact of residential low-carbon technologies on low-voltage grid reinforcements," Applied Energy, Elsevier, vol. 297(C).
    14. Mohammad S. Islam & Shahid Husain & Jawed Mustafa & Yuantong Gu, 2022. "A Novel Machine Learning Prediction Model for Aerosol Transport in Upper 17-Generations of the Human Respiratory Tract," Future Internet, MDPI, vol. 14(9), pages 1-16, August.
    15. Raoul Bernards & Werner van Westering & Johan Morren & Han Slootweg, 2020. "Analysis of Energy Transition Impact on the Low-Voltage Network Using Stochastic Load and Generation Models," Energies, MDPI, vol. 13(22), pages 1-21, November.
    16. Bahrudin Hrnjica & Ognjen Bonacci, 2019. "Lake Level Prediction using Feed Forward and Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2471-2484, May.
    17. Good, Nicholas & Martínez Ceseña, Eduardo A. & Heltorp, Christopher & Mancarella, Pierluigi, 2019. "A transactive energy modelling and assessment framework for demand response business cases in smart distributed multi-energy systems," Energy, Elsevier, vol. 184(C), pages 165-179.
    18. Xu, Xiandong & Jin, Xiaolong & Jia, Hongjie & Yu, Xiaodan & Li, Kang, 2015. "Hierarchical management for integrated community energy systems," Applied Energy, Elsevier, vol. 160(C), pages 231-243.
    19. Marta Matyjaszek & Gregorio Fidalgo Valverde & Alicja Krzemień & Krzysztof Wodarski & Pedro Riesgo Fernández, 2020. "Optimizing Predictor Variables in Artificial Neural Networks When Forecasting Raw Material Prices for Energy Production," Energies, MDPI, vol. 13(8), pages 1-15, April.
    20. Hossien Riahi-Madvar & Majid Dehghani & Rasoul Memarzadeh & Bahram Gharabaghi, 2021. "Short to Long-Term Forecasting of River Flows by Heuristic Optimization Algorithms Hybridized with ANFIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1149-1166, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1532-:d:152137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.