IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1428-d150396.html
   My bibliography  Save this article

Comparative Investigation of Hybrid Excitation Flux Switching Machines

Author

Listed:
  • Yi Du

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Wei Lu

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Qi Wang

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xiaoyong Zhu

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Li Quan

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

In this paper, the effect of partitioned stator (PS) structure and iron flux bridges in hybrid excitation flux switching (HEFS) machines is comprehensively discussed and compared. Firstly, the operating principles of four HEFS machines with single stator and PS respectively with and without iron flux bridges are described. Then an equivalent lumped parameter magnetic circuit model is developed to analyze the characteristics of PS structure and iron flux bridges. In order to achieve a fair comparison among different HEFS machines, the multi-level design optimization method is used to obtain the optimal parameters efficiently, based on which the electromagnetic performances of four machines are comprehensively evaluated by using 2D finite element analysis (2D-FEA). The results reveal that the machines with PS structure can exhibit not only a better flux regulation capability but also a higher torque density than conventional HEFS machines. Moreover, by adopting iron flux bridges, enlarged wide constant power speed region (CPSR) can be achieved, but the PM utilization will be slightly sacrificed.

Suggested Citation

  • Yi Du & Wei Lu & Qi Wang & Xiaoyong Zhu & Li Quan, 2018. "Comparative Investigation of Hybrid Excitation Flux Switching Machines," Energies, MDPI, vol. 11(6), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1428-:d:150396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengming Shu & Xiaoyong Zhu & Li Quan & Yi Du & Chang Liu, 2017. "Electromagnetic Performance Evaluation of an Outer-Rotor Flux-Switching Permanent Magnet Motor Based on Electrical-Thermal Two-Way Coupling Method," Energies, MDPI, vol. 10(5), pages 1-16, May.
    2. Yi Du & Gang Yang & Li Quan & Xiaoyong Zhu & Feng Xiao & Haoyang Wu, 2017. "Detent Force Reduction of a C-Core Linear Flux-Switching Permanent Magnet Machine with Multiple Additional Teeth," Energies, MDPI, vol. 10(3), pages 1-14, March.
    3. Gan Zhang & Wei Hua & Ming Cheng, 2015. "Steady-State Characteristics Analysis of Hybrid-Excited Flux-Switching Machines with Identical Iron Laminations," Energies, MDPI, vol. 8(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjing Hu & Xueyi Zhang & Hongbin Yin & Huihui Geng & Yufeng Zhang & Liwei Shi, 2020. "Analysis of Magnetic Field and Electromagnetic Performance of a New Hybrid Excitation Synchronous Motor with dual-V type Magnets," Energies, MDPI, vol. 13(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunyun Chen & Yu Ding & Jiahong Zhuang & Xiaoyong Zhu, 2018. "Multi-Objective Optimization Design and Multi-Physics Analysis a Double-Stator Permanent-Magnet Doubly Salient Machine," Energies, MDPI, vol. 11(8), pages 1-15, August.
    2. Wenjuan Hao & Yu Wang, 2018. "Comparison of the Stator Step Skewed Structures for Cogging Force Reduction of Linear Flux Switching Permanent Magnet Machines," Energies, MDPI, vol. 11(8), pages 1-14, August.
    3. Yuqing Yao & Chunhua Liu & Christopher H.T. Lee, 2018. "Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, August.
    4. Wenjuan Hao & Yu Wang, 2017. "Thrust Force Ripple Reduction of Two C-Core Linear Flux-Switching Permanent Magnet Machines of High Thrust Force Capability," Energies, MDPI, vol. 10(10), pages 1-13, October.
    5. Noman Ullah & Abdul Basit & Faisal Khan & Wasiq Ullah & Mohsin Shahzad & Atif Zahid, 2018. "Enhancing Capabilities of Double Sided Linear Flux Switching Permanent Magnet Machines," Energies, MDPI, vol. 11(10), pages 1-21, October.
    6. Peixin Liang & Yulong Pei & Feng Chai & Kui Zhao, 2016. "Analytical Calculation of D - and Q -axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory," Energies, MDPI, vol. 9(8), pages 1-11, July.
    7. Mustafa Tumbek & Selami Kesler, 2019. "Design and Implementation of a Low Power Outer-Rotor Line-Start Permanent-Magnet Synchronous Motor for Ultra-Light Electric Vehicles," Energies, MDPI, vol. 12(16), pages 1-20, August.
    8. J. F. Pan & Weiyu Wang & Bo Zhang & Eric Cheng & Jianping Yuan & Li Qiu & Xiaoyu Wu, 2017. "Complimentary Force Allocation Control for a Dual-Mover Linear Switched Reluctance Machine," Energies, MDPI, vol. 11(1), pages 1-17, December.
    9. Zhengming Shu & Xiaoyong Zhu & Li Quan & Yi Du & Chang Liu, 2017. "Electromagnetic Performance Evaluation of an Outer-Rotor Flux-Switching Permanent Magnet Motor Based on Electrical-Thermal Two-Way Coupling Method," Energies, MDPI, vol. 10(5), pages 1-16, May.
    10. Yi Du & Gang Yang & Li Quan & Xiaoyong Zhu & Feng Xiao & Haoyang Wu, 2017. "Detent Force Reduction of a C-Core Linear Flux-Switching Permanent Magnet Machine with Multiple Additional Teeth," Energies, MDPI, vol. 10(3), pages 1-14, March.
    11. Feng Li & Xiaoyong Zhu, 2021. "Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching PM Generator," Energies, MDPI, vol. 14(16), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1428-:d:150396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.