IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1335-d148659.html
   My bibliography  Save this article

Influence of Single and Multiple Dry Bands on Critical Flashover Voltage of Silicone Rubber Outdoor Insulators: Simulation and Experimental Study

Author

Listed:
  • Arshad

    (Department of Electrical Engineering, Faculty of Engineering and Technology, HITEC University, Taxila 47080, Pakistan
    School of Engineering and Built Environment, Glasgow Caledonian University, G4 0BA Scotland, UK)

  • Muhammad Ali Mughal

    (Department of Electrical Engineering, Faculty of Engineering and Technology, HITEC University, Taxila 47080, Pakistan)

  • Azam Nekahi

    (School of Engineering and Built Environment, Glasgow Caledonian University, G4 0BA Scotland, UK)

  • Mansoor Khan

    (School of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Farhana Umer

    (Electrical Engineering Department, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan)

Abstract

Dry band formation on the surface of outdoor insulators is one of the main reasons leading to flashover and power outages. In this paper, a dynamic arc model is proposed for single and multiple dry bands configuration to predict the critical flashover voltage for silicone rubber outdoor insulators. An arc is modelled as a time dependent impedance consisting of a Resistor Inductor Capacitor (RLC) circuit. The effect of dry band location and existence of multiple dry bands on critical flashover voltage is investigated. To validate the proposed model, experiments were conducted in a climate chamber under controlled environmental conditions on rectangular silicone rubber sheets polluted using improved solid layer method based on IEC 60,507. Tests were conducted at different dry band configurations and pollution severity levels. A good correlation was found between experimental results and simulation results. This model can provide a good foundation for the development of mathematical models for station post insulators having multiple dry and clean bands and can be used in the design and selection of outdoor insulators for polluted conditions.

Suggested Citation

  • Arshad & Muhammad Ali Mughal & Azam Nekahi & Mansoor Khan & Farhana Umer, 2018. "Influence of Single and Multiple Dry Bands on Critical Flashover Voltage of Silicone Rubber Outdoor Insulators: Simulation and Experimental Study," Energies, MDPI, vol. 11(6), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1335-:d:148659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arshad & Azam Nekahi & Scott G. McMeekin & Masoud Farzaneh, 2016. "Flashover Characteristics of Silicone Rubber Sheets under Various Environmental Conditions," Energies, MDPI, vol. 9(9), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maurizio Albano & A. Manu Haddad & Nathan Bungay, 2019. "Is the Dry-Band Characteristic a Function of Pollution and Insulator Design?," Energies, MDPI, vol. 12(19), pages 1-15, September.
    2. Arshad & Jawad Ahmad & Ahsen Tahir & Brian G. Stewart & Azam Nekahi, 2020. "Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique," Energies, MDPI, vol. 13(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rabah Boudissa & Fatma Bouchelga & Stefan Kornhuber & Klaus Dieter Haim, 2019. "Constellation of Condensation and Raindrops and Its Effect on the DC Flashover Voltage of Inclined Silicone Insulation," Energies, MDPI, vol. 12(18), pages 1-17, September.
    2. Xiangxin Li & Ming Zhou & Yazhou Luo & Gang Wang & Lin Jia, 2018. "Effect of Ice Shedding on Discharge Characteristics of an Ice-Covered Insulator String during AC Flashover," Energies, MDPI, vol. 11(9), pages 1-11, September.
    3. Xishan Wen & Xiaoqing Yuan & Lei Lan & Lu Hao & Yu Wang & Shaodong Li & Hailiang Lu & Zhenghong Bao, 2017. "RTV Silicone Rubber Degradation Induced by Temperature Cycling," Energies, MDPI, vol. 10(7), pages 1-12, July.
    4. Yaqi Zhang & Licheng Li & Yongxia Han & Yaoxuan Ruan & Jie Yang & Hansheng Cai & Gang Liu & Yi Zhang & Lei Jia & Yutang Ma, 2018. "Flashover Performance Test with Lightning Impulse and Simulation Analysis of Different Insulators in a 110 kV Double-Circuit Transmission Tower," Energies, MDPI, vol. 11(3), pages 1-13, March.
    5. Arshad & Jawad Ahmad & Ahsen Tahir & Brian G. Stewart & Azam Nekahi, 2020. "Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique," Energies, MDPI, vol. 13(15), pages 1-16, July.
    6. Kazuki Komatsu & Hao Liu & Mitsuki Shimada & Yukio Mizuno, 2019. "Assessment of Surface Degradation of Silicone Rubber Caused by Partial Discharge," Energies, MDPI, vol. 12(14), pages 1-13, July.
    7. Ang Ren & Hongshun Liu & Jianchun Wei & Qingquan Li, 2017. "Natural Contamination and Surface Flashover on Silicone Rubber Surface under Hazeā€“Fog Environment," Energies, MDPI, vol. 10(10), pages 1-18, October.
    8. Shahid Alam & Yuriy V. Serdyuk & Stanislaw M. Gubanski, 2020. "Temperature and Field Induced Variations of Electric Conductivities of HTV Silicone Rubbers Derived from Measured Currents and Surface Potential Decay Characteristics," Energies, MDPI, vol. 13(11), pages 1-10, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1335-:d:148659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.