Pretreatment of Corn Stover Using Organosolv with Hydrogen Peroxide for Effective Enzymatic Saccharification
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Seong Ju Kim & Tae Hyun Kim & Kyeong Keun Oh, 2018. "Deacetylation Followed by Fractionation of Yellow Poplar Sawdust for the Production of Toxicity-Reduced Hemicellulosic Sugar for Ethanol Fermentation," Energies, MDPI, vol. 11(2), pages 1-11, February.
- Yong Cheol Park & Tae Hyun Kim & Jun Seok Kim, 2018. "Flow-Through Pretreatment of Corn Stover by Recycling Organosolv to Reduce Waste Solvent," Energies, MDPI, vol. 11(4), pages 1-8, April.
- Leonidas Matsakas & Christos Nitsos & Dimitrij Vörös & Ulrika Rova & Paul Christakopoulos, 2017. "High-Titer Methane from Organosolv-Pretreated Spruce and Birch," Energies, MDPI, vol. 10(3), pages 1-15, February.
- Park, Yong Cheol & Kim, Jun Seok, 2012. "Comparison of various alkaline pretreatment methods of lignocellulosic biomass," Energy, Elsevier, vol. 47(1), pages 31-35.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shaghaleh, Hiba & Xu, Xu & Liu, He & Wang, Shifa & Alhaj Hamoud, Yousef & Dong, Fuhao & Luo, Jinyue, 2019. "The effect of atmospheric pressure plasma pretreatment with various gases on the structural characteristics and chemical composition of wheat straw and applications to enzymatic hydrolysis," Energy, Elsevier, vol. 176(C), pages 195-210.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hyun Jin Jung & Hyun Kwak & Jinyoung Chun & Kyeong Keun Oh, 2021. "Alkaline Fractionation and Subsequent Production of Nano-Structured Silica and Cellulose Nano-Fibrils for the Comprehensive Utilization of Rice Husk," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
- Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Yong Cheol Park & Tae Hyun Kim & Jun Seok Kim, 2018. "Flow-Through Pretreatment of Corn Stover by Recycling Organosolv to Reduce Waste Solvent," Energies, MDPI, vol. 11(4), pages 1-8, April.
- Christos Nitsos & Ulrika Rova & Paul Christakopoulos, 2017. "Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications," Energies, MDPI, vol. 11(1), pages 1-23, December.
- Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
- Dutta, Sajal Kanti & Halder, Gopinath & Mandal, Mrinal Kanti, 2014. "Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach," Energy, Elsevier, vol. 71(C), pages 579-587.
- Sunčica Beluhan & Katarina Mihajlovski & Božidar Šantek & Mirela Ivančić Šantek, 2023. "The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing," Energies, MDPI, vol. 16(19), pages 1-38, October.
- Kehinde O. Olatunji & Daniel M. Madyira & Noor A. Ahmed & Oyetola Ogunkunle, 2022. "Effect of Combined Particle Size Reduction and Fe 3 O 4 Additives on Biogas and Methane Yields of Arachis hypogea Shells at Mesophilic Temperature," Energies, MDPI, vol. 15(11), pages 1-15, May.
- Vasiliki Kamperidou & Paschalina Terzopoulou, 2021. "Anaerobic Digestion of Lignocellulosic Waste Materials," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
- Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
- Wen, Pei-Ling & Lin, Jin-Xu & Lin, Shih-Mo & Feng, Chun-Chiang & Ko, Fu-Kuang, 2015. "Optimal production of cellulosic ethanol from Taiwan's agricultural waste," Energy, Elsevier, vol. 89(C), pages 294-304.
- Roberto Paz Cedeno, Fernando & Belon de Siqueira, Breno & Gabriel Solorzano Chavez, Eddyn & Ulises Miranda Roldán, Ismael & Moreira Ropelato, Leonardo & Paul Martínez Galán, Julián & Masarin, Fernando, 2022. "Recovery of cellulose and lignin from Eucalyptus by-product and assessment of cellulose enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 193(C), pages 807-820.
- Yuan, Zhaoyang & Li, Guodong & Wei, Weiqi & Wang, Jiarun & Fang, Zhen, 2020. "A comparison of different pre-extraction methods followed by steam pretreatment of bamboo to improve the enzymatic digestibility and ethanol production," Energy, Elsevier, vol. 196(C).
- Ma, Shuaishuai & Wang, Hongliang & Li, Jingxue & Fu, Yu & Zhu, Wanbin, 2019. "Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion," Energy, Elsevier, vol. 189(C).
- Kavitha, S. & Gajendran, T. & Saranya, K. & Selvakumar, P. & Manivasagan, V. & Jeevitha, S., 2022. "An insight - A statistical investigation of consolidated bioprocessing of Allium ascalonicum leaves to ethanol using Hangateiclostridium thermocellum KSMK1203 and synthetic consortium," Renewable Energy, Elsevier, vol. 187(C), pages 403-416.
- Li, Wen-Chao & Zhu, Jia-Qing & Zhao, Xiong & Qin, Lei & Xu, Tao & Zhou, Xiao & Li, Xia & Li, Bing-Zhi & Yuan, Ying-Jin, 2019. "Improving co-fermentation of glucose and xylose by adaptive evolution of engineering xylose-fermenting Saccharomyces cerevisiae and different fermentation strategies," Renewable Energy, Elsevier, vol. 139(C), pages 1176-1183.
- Tan, Minghui & Ma, Liang & Rehman, Muhamamd Saif Ur & Ahmed, Muhammad Ajaz & Sajid, Muhammad & Xu, Xia & Sun, Yong & Cui, Ping & Xu, Jian, 2019. "Screening of acidic and alkaline pretreatments for walnut shell and corn stover biorefining using two way heterogeneity evaluation," Renewable Energy, Elsevier, vol. 132(C), pages 950-958.
- Anu, & Kumar, Anil & Jain, Kavish Kumar & Singh, Bijender, 2020. "Process optimization for chemical pretreatment of rice straw for bioethanol production," Renewable Energy, Elsevier, vol. 156(C), pages 1233-1243.
- Mengjie Wu & Hongyu Liu & Chunping Yang, 2019. "Effects of Pretreatment Methods of Wheat Straw on Adsorption of Cd(II) from Waterlogged Paddy Soil," IJERPH, MDPI, vol. 16(2), pages 1-21, January.
More about this item
Keywords
biomass; pretreatment; corn stover; ethanol; organosolv; hydrogen peroxide;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1301-:d:148002. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.