IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v139y2019icp1176-1183.html
   My bibliography  Save this article

Improving co-fermentation of glucose and xylose by adaptive evolution of engineering xylose-fermenting Saccharomyces cerevisiae and different fermentation strategies

Author

Listed:
  • Li, Wen-Chao
  • Zhu, Jia-Qing
  • Zhao, Xiong
  • Qin, Lei
  • Xu, Tao
  • Zhou, Xiao
  • Li, Xia
  • Li, Bing-Zhi
  • Yuan, Ying-Jin

Abstract

Xylose utilization of engineered yeast is vulnerable to inhibitors generated during pretreatment of lignocellulose. In this study, adaptive evolution was applied to enhance the tolerance of xylose-fermenting strain. Compared to the parental strain, the ethanol yield was increased by 60% and 80% for the adapted strain (E7-403) when xylose was used as the sole carbon resource with 20% and 50% inhibitor cocktails, respectively. E7-403 removed furfural more effectively than parental strain (E7) in the fermentation with 100% inhibitor cocktails. In the fermentation with mixed sugar and high inhibitor concentration, glucose was depleted within 36 h for E7-403 while 6.1 g/L glucose was still left after 120 h for E7. Consequently, ethanol yield of E7-403 was 22.9% higher than that of E7. It was demonstrated that E7-403 strain exhibited an enhanced ability for regulating cellular reactive oxygen species, which alleviated the harmful effects of inhibitors. Meanwhile, E7-403 strain was further applied in co-culture and pre-fermentation process to improve xylose utilization.

Suggested Citation

  • Li, Wen-Chao & Zhu, Jia-Qing & Zhao, Xiong & Qin, Lei & Xu, Tao & Zhou, Xiao & Li, Xia & Li, Bing-Zhi & Yuan, Ying-Jin, 2019. "Improving co-fermentation of glucose and xylose by adaptive evolution of engineering xylose-fermenting Saccharomyces cerevisiae and different fermentation strategies," Renewable Energy, Elsevier, vol. 139(C), pages 1176-1183.
  • Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:1176-1183
    DOI: 10.1016/j.renene.2019.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119303349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Yong Cheol & Kim, Jun Seok, 2012. "Comparison of various alkaline pretreatment methods of lignocellulosic biomass," Energy, Elsevier, vol. 47(1), pages 31-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Boyang & Hao, Bo & Yu, Haizhong & Tu, Fen & Wei, Xiaoyang & Xiong, Ke & Zeng, Yajun & Zeng, Hu & Liu, Peng & Tu, Yuanyuan & Wang, Yanting & Kang, Heng & Peng, Liangcai & Xia, Tao, 2022. "Double integrating XYL2 into engineered Saccharomyces cerevisiae strains for consistently enhanced bioethanol production by effective xylose and hexose co-consumption of steam-exploded lignocellulose ," Renewable Energy, Elsevier, vol. 186(C), pages 341-349.
    2. Rosen, Yan & Mamane, Hadas & Gerchman, Yoram, 2021. "Immersed ozonation of agro-wastes as an effective pretreatment method in bioethanol production," Renewable Energy, Elsevier, vol. 174(C), pages 382-390.
    3. Xu, Chaozhong & Liu, Xu & Ding, Chenrong & Zhou, Xin & Xu, Yong & Gu, Xiaoli, 2023. "Power consumption and oxygen transfer optimization for C5 sugar acid production in a gas-liquid stirred tank bioreactor using CFD-Taguchi method," Renewable Energy, Elsevier, vol. 212(C), pages 430-442.
    4. Therasme, Obste & Volk, Timothy A. & Fortier, Marie-Odile & Kim, Youngwoon & Wood, Christopher D. & Ha, HakSoo & Ali, Atif & Brown, Tristan & Malmsheimer, Robert, 2022. "Carbon footprint of biofuels production from forest biomass using hot water extraction and biochemical conversion in the Northeast United States," Energy, Elsevier, vol. 241(C).
    5. Tsegaye, Bahiru & Balomajumder, Chandrajit & Roy, Partha, 2020. "Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production," Renewable Energy, Elsevier, vol. 148(C), pages 923-934.
    6. Qu, Chunyun & Dai, Kaiqun & Liu, Gongliang & Wang, Jufang, 2023. "Engineering Thermoanaerobacterium aotearoense SCUT27 with the deficiency of a hypothetic protein regulated by ArgR1864 for enhanced ethanol production from lignocellulosic hydrolysates," Renewable Energy, Elsevier, vol. 216(C).
    7. Tran, Phuong Hoang Nguyen & Jung, Je Hyeong & Ko, Ja Kyong & Gong, Gyeongtaek & Um, Youngsoon & Lee, Sun-Mi, 2023. "Co-production of ethanol and polyhydroxybutyrate from lignocellulosic biomass using an engineered Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 212(C), pages 601-611.
    8. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    9. Li, Jun & Zhao, Renyong & Xu, Youjie & Wu, Xiaorong & Bean, Scott R. & Wang, Donghai, 2022. "Fuel ethanol production from starchy grain and other crops: An overview on feedstocks, affecting factors, and technical advances," Renewable Energy, Elsevier, vol. 188(C), pages 223-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Cheol Park & Tae Hyun Kim & Jun Seok Kim, 2018. "Flow-Through Pretreatment of Corn Stover by Recycling Organosolv to Reduce Waste Solvent," Energies, MDPI, vol. 11(4), pages 1-8, April.
    2. Hyun Jin Jung & Hyun Kwak & Jinyoung Chun & Kyeong Keun Oh, 2021. "Alkaline Fractionation and Subsequent Production of Nano-Structured Silica and Cellulose Nano-Fibrils for the Comprehensive Utilization of Rice Husk," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    3. Dutta, Sajal Kanti & Halder, Gopinath & Mandal, Mrinal Kanti, 2014. "Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach," Energy, Elsevier, vol. 71(C), pages 579-587.
    4. Wen, Pei-Ling & Lin, Jin-Xu & Lin, Shih-Mo & Feng, Chun-Chiang & Ko, Fu-Kuang, 2015. "Optimal production of cellulosic ethanol from Taiwan's agricultural waste," Energy, Elsevier, vol. 89(C), pages 294-304.
    5. Roberto Paz Cedeno, Fernando & Belon de Siqueira, Breno & Gabriel Solorzano Chavez, Eddyn & Ulises Miranda Roldán, Ismael & Moreira Ropelato, Leonardo & Paul Martínez Galán, Julián & Masarin, Fernando, 2022. "Recovery of cellulose and lignin from Eucalyptus by-product and assessment of cellulose enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 193(C), pages 807-820.
    6. Yuan, Zhaoyang & Li, Guodong & Wei, Weiqi & Wang, Jiarun & Fang, Zhen, 2020. "A comparison of different pre-extraction methods followed by steam pretreatment of bamboo to improve the enzymatic digestibility and ethanol production," Energy, Elsevier, vol. 196(C).
    7. Ma, Shuaishuai & Wang, Hongliang & Li, Jingxue & Fu, Yu & Zhu, Wanbin, 2019. "Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion," Energy, Elsevier, vol. 189(C).
    8. Anu, & Kumar, Anil & Jain, Kavish Kumar & Singh, Bijender, 2020. "Process optimization for chemical pretreatment of rice straw for bioethanol production," Renewable Energy, Elsevier, vol. 156(C), pages 1233-1243.
    9. Mengjie Wu & Hongyu Liu & Chunping Yang, 2019. "Effects of Pretreatment Methods of Wheat Straw on Adsorption of Cd(II) from Waterlogged Paddy Soil," IJERPH, MDPI, vol. 16(2), pages 1-21, January.
    10. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    11. Sunčica Beluhan & Katarina Mihajlovski & Božidar Šantek & Mirela Ivančić Šantek, 2023. "The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing," Energies, MDPI, vol. 16(19), pages 1-38, October.
    12. Yong Cheol Park & Jun Seok Kim & Tae Hyun Kim, 2018. "Pretreatment of Corn Stover Using Organosolv with Hydrogen Peroxide for Effective Enzymatic Saccharification," Energies, MDPI, vol. 11(5), pages 1-9, May.
    13. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    14. Kavitha, S. & Gajendran, T. & Saranya, K. & Selvakumar, P. & Manivasagan, V. & Jeevitha, S., 2022. "An insight - A statistical investigation of consolidated bioprocessing of Allium ascalonicum leaves to ethanol using Hangateiclostridium thermocellum KSMK1203 and synthetic consortium," Renewable Energy, Elsevier, vol. 187(C), pages 403-416.
    15. Tan, Minghui & Ma, Liang & Rehman, Muhamamd Saif Ur & Ahmed, Muhammad Ajaz & Sajid, Muhammad & Xu, Xia & Sun, Yong & Cui, Ping & Xu, Jian, 2019. "Screening of acidic and alkaline pretreatments for walnut shell and corn stover biorefining using two way heterogeneity evaluation," Renewable Energy, Elsevier, vol. 132(C), pages 950-958.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:139:y:2019:i:c:p:1176-1183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.