IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1072-d143441.html
   My bibliography  Save this article

The Maximum-Allowable Well Depth While Drilling of Extended-Reach Wells Targeting to Offshore Depleted Reservoirs

Author

Listed:
  • Xuyue Chen

    (MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)

  • Jin Yang

    (MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)

  • Deli Gao

    (MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)

  • Yongcun Feng

    (Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX 78705, USA)

  • Yanjun Li

    (Zhanjiang Branch of CNOOC Ltd., Zhanjiang 524057, China)

  • Ming Luo

    (Zhanjiang Branch of CNOOC Ltd., Zhanjiang 524057, China)

Abstract

In depleted offshore reservoirs, pore pressure declines and consequently horizontal in-situ stresses decrease as well. This causes a very limited well depth for extended-reach drilling targeting to offshore depleted reservoirs. In this paper, based on analyzing the safe mud weight window of the depleted offshore reservoirs, a model of predicting the Maximum Allowable Measured Depth (MAMD) for extended-reach drilling targeting to offshore depleted reservoirs is developed. Meanwhile, the numerical method of the model is proposed, and the key affecting factors of the MAMD are also investigated. The results show the pore pressure depletion has obvious effects on the MAMD. With the depletion of pore pressure, the safe mud weight window appears narrower and even disappears, consequently the predicted MAMD becomes shorter. For a normal regime depositional environment in the depleted reservoirs, it may be impossible to drill with conventional drilling method in the nearby directions of the maximum horizontal in-situ stress, while it may be much safer and attain a long MAMD when drilling in the directions near the minimum horizontal in-situ stress. Moreover, the MAMD will decrease with the increase of Poisson’s ratio and Biot’s parameter, and its response to Poisson’s ratio is more obvious. For a specific target depleted reservoir, the extended-reach drilling with a high borehole inclination may have a longer MAMD than that with a low borehole inclination. This paper presents a method for promoting the design of extended-reach drilling targeting to offshore depleted reservoirs.

Suggested Citation

  • Xuyue Chen & Jin Yang & Deli Gao & Yongcun Feng & Yanjun Li & Ming Luo, 2018. "The Maximum-Allowable Well Depth While Drilling of Extended-Reach Wells Targeting to Offshore Depleted Reservoirs," Energies, MDPI, vol. 11(5), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1072-:d:143441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Zhao & Jiyong Han & Liangbin Dou & Yongcun Feng, 2017. "Moderate Collapse in a Shale Cap of a Nearly Depleted Reservoir," Energies, MDPI, vol. 10(11), pages 1-15, November.
    2. Rui, Zhenhua & Wang, Xiaoqing & Zhang, Zhien & Lu, Jun & Chen, Gang & Zhou, Xiyu & Patil, Shirish, 2018. "A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada," Applied Energy, Elsevier, vol. 213(C), pages 76-91.
    3. Qiangui Zhang & Xiangyu Fan & Yongchang Liang & Minghui Li & Guangzhi Li & Tianshou Ma & Wen Nie, 2017. "Mechanical Behavior and Permeability Evolution of Reconstituted Coal Samples under Various Unloading Confining Pressures—Implications for Wellbore Stability Analysis," Energies, MDPI, vol. 10(3), pages 1-19, March.
    4. Yiyu Lu & Yugang Cheng & Zhaolong Ge & Liang Cheng & Shaojie Zuo & Jianyu Zhong, 2016. "Determination of Fracture Initiation Locations during Cross-Measure Drilling for Hydraulic Fracturing of Coal Seams," Energies, MDPI, vol. 9(5), pages 1-13, May.
    5. Natalie Christine Nakaten & Thomas Kempka, 2017. "RETRACTED: Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness," Energies, MDPI, vol. 10(10), pages 1, October.
    6. Xiuhua Zheng & Chenyang Duan & Zheng Yan & Hongyu Ye & Zhiqing Wang & Bairu Xia, 2017. "Equivalent Circulation Density Analysis of Geothermal Well by Coupling Temperature," Energies, MDPI, vol. 10(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asongu, Simplice A & Odhiambo, Nicholas M, 2019. "Governance,CO2 emissions and inclusive human development in Sub-Saharan Africa," Working Papers 25253, University of South Africa, Department of Economics.
    2. Peng Gong & Zhanguo Ma & Xiaoyan Ni & Ray Ruichong Zhang, 2017. "Floor Heave Mechanism of Gob-Side Entry Retaining with Fully-Mechanized Backfilling Mining," Energies, MDPI, vol. 10(12), pages 1-19, December.
    3. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    4. Rui Gao & Bin Yu & Hongchun Xia & Hongfei Duan, 2017. "Reduction of Stress Acting on a Thick, Deep Coal Seam by Protective-Seam Mining," Energies, MDPI, vol. 10(8), pages 1-15, August.
    5. Zhu Li & Jialin Xu & Shengchao Yu & Jinfeng Ju & Jingmin Xu, 2018. "Mechanism and Prevention of a Chock Support Failure in the Longwall Top-Coal Caving Faces: A Case Study in Datong Coalfield, China," Energies, MDPI, vol. 11(2), pages 1-17, January.
    6. Tianshou Ma & Tao Tang & Ping Chen & Chunhe Yang, 2019. "Uncertainty Evaluation of Safe Mud Weight Window Utilizing the Reliability Assessment Method," Energies, MDPI, vol. 12(5), pages 1-31, March.
    7. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    8. Yao, Yue & Sun, Deqiang & Xu, Jin-Hua & Wang, Bin & Peng, Guohong & Sun, Bingmei, 2023. "Evaluation of enhanced oil recovery methods for mature continental heavy oil fields in China based on geology, technology and sustainability criteria," Energy, Elsevier, vol. 278(PB).
    9. Niu, Qinghe & Cao, Liwen & Sang, Shuxun & Zhou, Xiaozhi & Wang, Zhenzhi & Wu, Zhiyong, 2017. "The adsorption-swelling and permeability characteristics of natural and reconstituted anthracite coals," Energy, Elsevier, vol. 141(C), pages 2206-2217.
    10. Haiyang Wang & Binwei Xia & Yiyu Lu & Tao Gong & Rui Zhang, 2017. "Study on the Propagation Laws of Hydrofractures Meeting a Faulted Structure in the Coal Seam," Energies, MDPI, vol. 10(5), pages 1-17, May.
    11. Heng Gao & Jun Lu & Zetian Zhang & Cong Li & Yihang Li, 2023. "Experimental Study on the Effect of Freeze-Thaw Cycles on the Mechanical and Permeability Characteristics of Coal," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    12. Radpour, Saeidreza & Gemechu, Eskinder & Ahiduzzaman, Md & Kumar, Amit, 2021. "Development of a framework for the assessment of the market penetration of novel in situ bitumen extraction technologies," Energy, Elsevier, vol. 220(C).
    13. Natalie Christine Nakaten & Thomas Kempka, 2019. "RETRACTED: Nakaten, N.C.; Kempka, T. Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness. Energies 2017, 10 , 1643," Energies, MDPI, vol. 12(17), pages 1, August.
    14. Sun, Wei & Cheng, Qinglin & Li, Zhidong & Wang, Zhihua & Gan, Yifan & Liu, Yang & Shao, Shuai, 2019. "Study on Coil Optimization on the Basis of Heating Effect and Effective Energy Evaluation during Oil Storage Process," Energy, Elsevier, vol. 185(C), pages 505-520.
    15. Zhengbin Wu & Hanzhao Chen & Xidong Cai & Qiyang Gou & Liangliang Jiang & Kai Chen & Zhangxin Chen & Shu Jiang, 2023. "Current Status and Future Trends of In Situ Catalytic Upgrading of Extra Heavy Oil," Energies, MDPI, vol. 16(12), pages 1-29, June.
    16. Tianyi Tan & Hui Zhang, 2021. "Study on the Mechanical Extended-Reach Limit Prediction Model of Horizontal Drilling with Dual-Channel Drillpipes," Energies, MDPI, vol. 14(22), pages 1-16, November.
    17. Fanhui Zeng & Fan Peng & Jianchun Guo & Jianhua Xiang & Qingrong Wang & Jiangang Zhen, 2018. "A Transient Productivity Model of Fractured Wells in Shale Reservoirs Based on the Succession Pseudo-Steady State Method," Energies, MDPI, vol. 11(9), pages 1-16, September.
    18. Ahmadi, Mohammadali & Hou, Qingfeng & Wang, Yuanyuan & Lei, Xuantong & Liu, Benjieming & Chen, Zhangxin, 2023. "Spotlight on reversible emulsification and demulsification of tetradecane-water mixtures using CO2/N2 switchable surfactants: Molecular dynamics (MD) simulation," Energy, Elsevier, vol. 279(C).
    19. Fa-qiang Su & Akihiro Hamanaka & Ken-ichi Itakura & Gota Deguchi & Wenyan Zhang & Hua Nan, 2018. "Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam," Energies, MDPI, vol. 11(4), pages 1-11, April.
    20. Becerra-Fernandez, Mauricio & Cosenz, Federico & Dyner, Isaac, 2020. "Modeling the natural gas supply chain for sustainable growth policy," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1072-:d:143441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.