IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1049-d143072.html
   My bibliography  Save this article

Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications

Author

Listed:
  • Azharul Karim

    (Science and Engineering Faculty, Queensland University of Technology, Brisbane CBD, QLD 4001, Australia)

  • Ashley Burnett

    (Science and Engineering Faculty, Queensland University of Technology, Brisbane CBD, QLD 4001, Australia)

  • Sabrina Fawzia

    (Science and Engineering Faculty, Queensland University of Technology, Brisbane CBD, QLD 4001, Australia)

Abstract

A large amount of energy is consumed by heating and cooling systems to provide comfort conditions for commercial building occupants, which generally contribute to peak electricity demands. Thermal storage tanks in HVAC systems, which store heating/cooling energy in the off-peak period for use in the peak period, can be used to offset peak time energy demand. In this study, a theoretical investigation on stratified thermal storage systems is performed to determine the factors that significantly influence the thermal performance of these systems for both heating and cooling applications. Five fully-insulated storage tank geometries, using water as the storage medium, were simulated to determine the effects of water inlet velocity, tank aspect ratio and temperature difference between charging (inlet) and the tank water on mixing and thermocline formation. Results indicate that thermal stratification enhances with increased temperature difference, lower inlet velocities and higher aspect ratios. It was also found that mixing increased by 303% when the temperature difference between the tank and inlet water was reduced from 80 °C to 10 °C, while decreasing the aspect ratio from 3.8 to 1.0 increased mixing by 143%. On the other hand, increasing the inlet water velocity significantly increased the storage mixing. A new theoretical relationship between the inlet water velocity and thermocline formation has been developed. It was also found that inlet flow rates can be increased, without increasing the mixing, after the formation of the thermocline.

Suggested Citation

  • Azharul Karim & Ashley Burnett & Sabrina Fawzia, 2018. "Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications," Energies, MDPI, vol. 11(5), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1049-:d:143072
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouhdjar, A. & Harhad, A., 2002. "Numerical analysis of transient mixed convection flow in storage tank: influence of fluid properties and aspect ratios on stratification," Renewable Energy, Elsevier, vol. 25(4), pages 555-567.
    2. Karim, M.A. & Perez, E. & Amin, Z.M., 2014. "Mathematical modelling of counter flow v-grove solar air collector," Renewable Energy, Elsevier, vol. 67(C), pages 192-201.
    3. Majedul Islam & Sarah Miller & Prasad Yarlagadda & Azharul Karim, 2017. "Investigation of the Effect of Physical and Optical Factors on the Optical Performance of a Parabolic Trough Collector," Energies, MDPI, vol. 10(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiqian Guo & ELSaeed Saad ELSihy & Zhirong Liao & Xiaoze Du, 2021. "A Comparative Study on the Performance of Single and Multi-Layer Encapsulated Phase Change Material Packed-Bed Thermocline Tanks," Energies, MDPI, vol. 14(8), pages 1-24, April.
    2. Hoofar Hemmatabady & Julian Formhals & Bastian Welsch & Daniel Otto Schulte & Ingo Sass, 2020. "Optimized Layouts of Borehole Thermal Energy Storage Systems in 4th Generation Grids," Energies, MDPI, vol. 13(17), pages 1-26, August.
    3. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    4. Piyatida Trinuruk & Papangkorn Jenyongsak & Somchai Wongwises, 2022. "Comparative Study of Inlet Structure and Obstacle Plate Designs Affecting the Temperature Stratification Characteristics," Energies, MDPI, vol. 15(6), pages 1-25, March.
    5. Rendall, Joseph & Abu-Heiba, Ahmad & Gluesenkamp, Kyle & Nawaz, Kashif & Worek, William & Elatar, Ahmed, 2021. "Nondimensional convection numbers modeling thermally stratified storage tanks: Richardson's number and hot-water tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Muschick, D. & Zlabinger, S. & Moser, A. & Lichtenegger, K. & Gölles, M., 2022. "A multi-layer model of stratified thermal storage for MILP-based energy management systems," Applied Energy, Elsevier, vol. 314(C).
    7. Klemen Sredenšek & Sebastijan Seme & Bojan Štumberger & Miralem Hadžiselimović & Amor Chowdhury & Zdravko Praunseis, 2021. "Experimental Validation of a Dynamic Photovoltaic/Thermal Collector Model in Combination with a Thermal Energy Storage Tank," Energies, MDPI, vol. 14(23), pages 1-21, December.
    8. Joong Yong Yi & Kyung Min Kim & Jongjun Lee & Mun Sei Oh, 2019. "Exergy Analysis for Utilizing Latent Energy of Thermal Energy Storage System in District Heating," Energies, MDPI, vol. 12(7), pages 1-13, April.
    9. Kocijel, Lino & Mrzljak, Vedran & Glažar, Vladimir, 2020. "Numerical analysis of geometrical and process parameters influence on temperature stratification in a large volumetric heat storage tank," Energy, Elsevier, vol. 194(C).
    10. Wunvisa Tipasri & Amnart Suksri & Karthikeyan Velmurugan & Tanakorn Wongwuttanasatian, 2022. "Energy Management for an Air Conditioning System Using a Storage Device to Reduce the On-Peak Power Consumption," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chii-Dong Ho & Hsuan Chang & Ching-Fang Hsiao & Chien-Chang Huang, 2018. "Device Performance Improvement of Recycling Double-Pass Cross-Corrugated Solar Air Collectors," Energies, MDPI, vol. 11(2), pages 1-18, February.
    2. Chii-Dong Ho & Hsuan Chang & Zih-Syuan Hong & Chien-Chang Huang & Yu-Han Chen, 2020. "Increasing the Device Performance of Recycling Double-Pass W-Ribs Solar Air Heaters," Energies, MDPI, vol. 13(9), pages 1-16, April.
    3. Zheng, Wandong & Li, Bojia & Zhang, Huan & You, Shijun & Li, Ying & Ye, Tianzhen, 2016. "Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions," Energy, Elsevier, vol. 109(C), pages 781-790.
    4. Kumar, Amit & Singh, Ajeet Pratap & Akshayveer, & Singh, O.P., 2022. "Performance characteristics of a new curved double-pass counter flow solar air heater," Energy, Elsevier, vol. 239(PA).
    5. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    6. Majedul Islam & Sarah Miller & Prasad Yarlagadda & Azharul Karim, 2017. "Investigation of the Effect of Physical and Optical Factors on the Optical Performance of a Parabolic Trough Collector," Energies, MDPI, vol. 10(11), pages 1-19, November.
    7. Majedul Islam & Prasad Yarlagadda & Azharul Karim, 2018. "Effect of the Orientation Schemes of the Energy Collection Element on the Optical Performance of a Parabolic Trough Concentrating Collector," Energies, MDPI, vol. 12(1), pages 1-20, December.
    8. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    9. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 36-51.
    10. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    11. Badescu, Viorel & Abed, Qahtan A. & Ciocanea, Adrian & Soriga, Iuliana, 2017. "The stability of the radiative regime does influence the daily performance of solar air heaters," Renewable Energy, Elsevier, vol. 107(C), pages 403-416.
    12. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    13. Ali Hassan & Ali M. Nikbakht & Sabrina Fawzia & Prasad Yarlagadda & Azharul Karim, 2024. "A Comprehensive Review of the Thermohydraulic Improvement Potentials in Solar Air Heaters through an Energy and Exergy Analysis," Energies, MDPI, vol. 17(7), pages 1-43, March.
    14. Chii-Dong Ho & Hsuan Chang & Ching-Fang Hsiao & Yu-Chen Lin, 2021. "Optimizing Thermal Efficiencies of Double-Pass Cross-Corrugated Solar Air Heaters on Various Configurations with External Recycling," Energies, MDPI, vol. 14(13), pages 1-23, July.
    15. Qimei Chen & Yan Wang & Jianhan Zhang & Zhifeng Wang, 2020. "The Knowledge Mapping of Concentrating Solar Power Development Based on Literature Analysis Technology," Energies, MDPI, vol. 13(8), pages 1-15, April.
    16. Jose L. Salmeron & Antonio Ruiz-Celma, 2018. "Elliot and Symmetric Elliot Extreme Learning Machines for Gaussian Noisy Industrial Thermal Modelling," Energies, MDPI, vol. 12(1), pages 1-19, December.
    17. Zheng, Wandong & Zhang, Huan & You, Shijun & Fu, Yindan & Zheng, Xuejing, 2017. "Thermal performance analysis of a metal corrugated packing solar air collector in cold regions," Applied Energy, Elsevier, vol. 203(C), pages 938-947.
    18. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    19. Wiesław Zima & Artur Cebula & Piotr Cisek, 2020. "Mathematical Model of a Sun-Tracked Parabolic Trough Collector and Its Verification," Energies, MDPI, vol. 13(16), pages 1-24, August.
    20. Mawire, A. & McPherson, M. & Heetkamp, R.R.J. van den & Mlatho, S.J.P., 2009. "Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1246-1252, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1049-:d:143072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.