IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p797-d138824.html
   My bibliography  Save this article

Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

Author

Listed:
  • Haitao Sun

    (State Key Laboratory of the Gas Disaster Detecting Preventing and Emergency Controlling, Chongqing 400037, China
    Gas Research Branch, China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400037, China)

  • Jie Cao

    (State Key Laboratory of the Gas Disaster Detecting Preventing and Emergency Controlling, Chongqing 400037, China
    Gas Research Branch, China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400037, China)

  • Minghui Li

    (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China)

  • Xusheng Zhao

    (State Key Laboratory of the Gas Disaster Detecting Preventing and Emergency Controlling, Chongqing 400037, China
    Gas Research Branch, China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400037, China)

  • Linchao Dai

    (State Key Laboratory of the Gas Disaster Detecting Preventing and Emergency Controlling, Chongqing 400037, China
    Gas Research Branch, China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400037, China)

  • Dongling Sun

    (State Key Laboratory of the Gas Disaster Detecting Preventing and Emergency Controlling, Chongqing 400037, China
    Gas Research Branch, China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400037, China)

  • Bo Wang

    (State Key Laboratory of the Gas Disaster Detecting Preventing and Emergency Controlling, Chongqing 400037, China
    Gas Research Branch, China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400037, China)

  • Boning Zhai

    (State Key Laboratory of the Gas Disaster Detecting Preventing and Emergency Controlling, Chongqing 400037, China
    Gas Research Branch, China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400037, China)

Abstract

Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross section and distance of the roadway were obtained, which can provide a reference for the protection of coal and gas outburst and control of catastrophic ventilation.

Suggested Citation

  • Haitao Sun & Jie Cao & Minghui Li & Xusheng Zhao & Linchao Dai & Dongling Sun & Bo Wang & Boning Zhai, 2018. "Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst," Energies, MDPI, vol. 11(4), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:797-:d:138824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng Zhai & Xianwei Xiang & Jizhao Xu & Shiliang Wu, 2016. "The characteristics and main influencing factors affecting coal and gas outbursts in Chinese Pingdingshan mining region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 507-530, May.
    2. Abdullah Fisne & Olgun Esen, 2014. "Coal and gas outburst hazard in Zonguldak Coal Basin of Turkey, and association with geological parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1363-1390, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongkang Yang & Qiaoyi Du & Chenlong Wang & Yu Bai, 2020. "Research on the Method of Methane Emission Prediction Using Improved Grey Radial Basis Function Neural Network Model," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Tianmo Zhou & Yunqiang Zhu & Kai Sun & Jialin Chen & Shu Wang & Huazhong Zhu & Xiaoshuang Wang, 2022. "Variance Analysis in China’s Coal Mine Accident Studies Based on Data Mining," IJERPH, MDPI, vol. 19(24), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jilin Wang & Ming Li & Shaochun Xu & Zhenghui Qu & Bo Jiang, 2018. "Simulation of Ground Stress Field and Advanced Prediction of Gas Outburst Risks in the Non-Mining Area of Xinjing Mine, China," Energies, MDPI, vol. 11(5), pages 1-16, May.
    2. Guorui Zhang & Enyuan Wang & Zhonghui Li & Ben Qin, 2022. "Risk assessment of coal and gas outburst in driving face based on finite interval cloud model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1969-1995, February.
    3. Ying Chen & Zhiwen Wang & Qianjia Hui & Zhaoju Zhang & Zikai Zhang & Bingjie Huo & Yang Chen & Jinliang Liu, 2023. "Influence of Gas Pressure on the Failure Mechanism of Coal-like Burst-Prone Briquette and the Subsequent Geological Dynamic Disasters," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    4. Xiong Ding & Cheng Zhai & Jizhao Xu & Xu Yu & Yong Sun, 2022. "Study on Coal Seepage Characteristics and Secondary Enhanced Gas Extraction Technology under Dual Stress Disturbance," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    5. Yang, Gang & Song, Dazhao & Wang, Man & Qiu, Liming & He, Xueqiu & Khan, Majid & Qian, Sun, 2024. "New insights into dynamic disaster monitoring through asynchronous deformation induced coal-gas outburst mechanism of tectonic and raw coal seams," Energy, Elsevier, vol. 295(C).
    6. Liang Cheng & Zhaolong Ge & Jiufu Chen & Hao Ding & Lishuang Zou & Ke Li, 2018. "A Sequential Approach for Integrated Coal and Gas Mining of Closely-Spaced Outburst Coal Seams: Results from a Case Study Including Mine Safety Improvements and Greenhouse Gas Reductions," Energies, MDPI, vol. 11(11), pages 1-16, November.
    7. Wen, Hu & Yan, Li & Jin, Yongfei & Wang, Zhipeng & Guo, Jun & Deng, Jun, 2023. "Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning," Energy, Elsevier, vol. 264(C).
    8. Marianna Oliskevych & Galyna Beregova & Viktor Tokarchuk, 2018. "Fuel Consumption in Ukraine: Evidence from Vector Error Correction Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 58-63.
    9. Xia Gao & Tongchuan Yang & Kai Yao & Baoyong Zhang & Qiang Wu & Chuanhai Liu, 2018. "Mechanical Performance of Methane Hydrate–Coal Mixture," Energies, MDPI, vol. 11(6), pages 1-14, June.
    10. Junqi Zhu & Li Yang & Xue Wang & Haotian Zheng & Mengdi Gu & Shanshan Li & Xin Fang, 2022. "Risk Assessment of Deep Coal and Gas Outbursts Based on IQPSO-SVM," IJERPH, MDPI, vol. 19(19), pages 1-22, October.
    11. Hongtao Liu & Linfeng Guo & Xidong Zhao, 2020. "Expansionary Evolution Characteristics of Plastic Zone in Rock and Coal Mass Ahead of Excavation Face and the Mechanism of Coal and Gas Outburst," Energies, MDPI, vol. 13(4), pages 1-13, February.
    12. Liang Chen & Qi Liu, 2022. "A Gas Pressure Prediction Model of the Excavation Face Based on Gas Emission," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    13. Junhong Si & Lin Li & Jianwei Cheng & Yiqiao Wang & Wei Hu & Tan Li & Zequan Li, 2021. "Characteristics of Airflow Reversal of Excavation Roadway after a Coal and Gas Outburst Accident," Energies, MDPI, vol. 14(12), pages 1-13, June.
    14. Feng Zhang & Jinshan Zhang, 2022. "Research on Joint Protection Layers and Gas Prevention Technology in Outburst Coal Seams," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    15. Yuan Zhao & Shugang Cao & Yong Li & Hongyun Yang & Ping Guo & Guojun Liu & Ruikai Pan, 2018. "Experimental and numerical investigation on the effect of moisture on coal permeability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1201-1221, February.
    16. Weiyao Guo & Qingheng Gu & Yunliang Tan & Shanchao Hu, 2019. "Case Studies of Rock Bursts in Tectonic Areas with Facies Change," Energies, MDPI, vol. 12(7), pages 1-11, April.
    17. Zhigen Zhao & Sheng Xue, 2022. "Multiple-Level Tectonic Control of Coalbed Methane Occurrence in the Huaibei Coalfield of Anhui Province, China," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:797-:d:138824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.