IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3645-d577711.html
   My bibliography  Save this article

Characteristics of Airflow Reversal of Excavation Roadway after a Coal and Gas Outburst Accident

Author

Listed:
  • Junhong Si

    (School of Emergency Technology and Management, North China Institute of Science and Technology, Beijing 101601, China)

  • Lin Li

    (School of Emergency Technology and Management, North China Institute of Science and Technology, Beijing 101601, China)

  • Jianwei Cheng

    (School of Safety Engineering, China University of Mining and Technology, Xuzhou 221008, China)

  • Yiqiao Wang

    (School of Emergency Technology and Management, North China Institute of Science and Technology, Beijing 101601, China)

  • Wei Hu

    (School of Emergency Technology and Management, North China Institute of Science and Technology, Beijing 101601, China)

  • Tan Li

    (School of Emergency Technology and Management, North China Institute of Science and Technology, Beijing 101601, China)

  • Zequan Li

    (School of Emergency Technology and Management, North China Institute of Science and Technology, Beijing 101601, China)

Abstract

Determining the influence scope of the airflow disorder is an important problem after coal and gas outburst accidents in ventilation systems. This paper puts forward the indexes of airflow disorder, including the length of the excavation roadway, the outburst pressure, the pressure difference of the air door, and the air quantity of the auxiliary fan. Using the orthogonal table of L 9 (3 4 ) and numerical simulation method, the characteristics of airflow reversal are studied, and the outburst airflow reversal degree is calculated should the ventilation facility fail. Furthermore, on the basis of fuzzy comprehensive optimization theory, the comprehensive evaluation model of the airflow disorder is established. The results show that the length of the excavation roadway is the most important factor affecting the stability of the ventilation system, followed by the outburst pressure, pressure difference of the air door, and air quantity of the auxiliary fan. The influence of a gas outburst accident on the return air system is greater than that on the inlet air system, and a larger air velocity has a greater impact on the ventilation system, especially the air inlet part. Moreover, the airflow reversal degree of the ventilation system increases with the increase of the outburst pressure or decreases with the length of the excavation roadway. This paper provides a basis for the prevention of gas outburst accidents.

Suggested Citation

  • Junhong Si & Lin Li & Jianwei Cheng & Yiqiao Wang & Wei Hu & Tan Li & Zequan Li, 2021. "Characteristics of Airflow Reversal of Excavation Roadway after a Coal and Gas Outburst Accident," Energies, MDPI, vol. 14(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3645-:d:577711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng Zhai & Xianwei Xiang & Jizhao Xu & Shiliang Wu, 2016. "The characteristics and main influencing factors affecting coal and gas outbursts in Chinese Pingdingshan mining region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 507-530, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junqi Zhu & Haotian Zheng & Li Yang & Shanshan Li & Liyan Sun & Jichao Geng, 2023. "Evaluation of deep coal and gas outburst based on RS-GA-BP," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2531-2551, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jilin Wang & Ming Li & Shaochun Xu & Zhenghui Qu & Bo Jiang, 2018. "Simulation of Ground Stress Field and Advanced Prediction of Gas Outburst Risks in the Non-Mining Area of Xinjing Mine, China," Energies, MDPI, vol. 11(5), pages 1-16, May.
    2. Haitao Sun & Jie Cao & Minghui Li & Xusheng Zhao & Linchao Dai & Dongling Sun & Bo Wang & Boning Zhai, 2018. "Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst," Energies, MDPI, vol. 11(4), pages 1-15, March.
    3. Guorui Zhang & Enyuan Wang & Zhonghui Li & Ben Qin, 2022. "Risk assessment of coal and gas outburst in driving face based on finite interval cloud model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1969-1995, February.
    4. Ying Chen & Zhiwen Wang & Qianjia Hui & Zhaoju Zhang & Zikai Zhang & Bingjie Huo & Yang Chen & Jinliang Liu, 2023. "Influence of Gas Pressure on the Failure Mechanism of Coal-like Burst-Prone Briquette and the Subsequent Geological Dynamic Disasters," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    5. Xiong Ding & Cheng Zhai & Jizhao Xu & Xu Yu & Yong Sun, 2022. "Study on Coal Seepage Characteristics and Secondary Enhanced Gas Extraction Technology under Dual Stress Disturbance," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    6. Yang, Gang & Song, Dazhao & Wang, Man & Qiu, Liming & He, Xueqiu & Khan, Majid & Qian, Sun, 2024. "New insights into dynamic disaster monitoring through asynchronous deformation induced coal-gas outburst mechanism of tectonic and raw coal seams," Energy, Elsevier, vol. 295(C).
    7. Wen, Hu & Yan, Li & Jin, Yongfei & Wang, Zhipeng & Guo, Jun & Deng, Jun, 2023. "Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning," Energy, Elsevier, vol. 264(C).
    8. Junqi Zhu & Li Yang & Xue Wang & Haotian Zheng & Mengdi Gu & Shanshan Li & Xin Fang, 2022. "Risk Assessment of Deep Coal and Gas Outbursts Based on IQPSO-SVM," IJERPH, MDPI, vol. 19(19), pages 1-22, October.
    9. Weiyao Guo & Qingheng Gu & Yunliang Tan & Shanchao Hu, 2019. "Case Studies of Rock Bursts in Tectonic Areas with Facies Change," Energies, MDPI, vol. 12(7), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3645-:d:577711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.