IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p758-d138321.html
   My bibliography  Save this article

A Method for Increasing the Operating Limit Capacity of Wind Farms Using Battery Energy Storage Systems with Rate of Change of Frequency

Author

Listed:
  • Dae-Hee Son

    (Department of Electrical Engineering, 3rd Engineering Structure, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Korea)

  • Muhammad Ali

    (Department of Electrical Engineering, 3rd Engineering Structure, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Korea)

  • Sang-Hee Kang

    (Department of Electrical Engineering, 3rd Engineering Structure, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Korea)

  • Jae-Haeng Heo

    (Raon Friends, 267 Simi-daero, Dongan-gu, Anyang-si, Gyeonggi-do 14054, Korea)

  • Soon-Ryul Nam

    (Department of Electrical Engineering, 3rd Engineering Structure, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Korea)

Abstract

In this paper, the appropriate rated power of battery energy storage system (BESS) and the operating limit capacity of wind farms are determined considering power system stability, and novel output control methods of BESS and wind turbines are proposed. The rated power of BESS is determined by correlation with the kinetic energy that can be released from wind turbines and synchronous generators when a disturbance occurs in the power system. After the appropriate rated power of BESS is determined, a novel control scheme for quickly responding to disturbances should be applied to BESS. It is important to compensate the insufficient power difference between demand and supply more quickly after a disturbance, and for this purpose, BESS output is controlled using the rate of change of frequency (ROCOF). Generally, BESS output is controlled by the frequency droop control (FDC), however if ROCOF falls below the threshold, BESS output increases sharply. Under this control for BESS, the power system’s stability can be improved and the operating limit capacity of wind farms can be increased. The operating limit capacity is determined as the smaller of technical limit and dynamic limit capacity. The technical limit capacity is calculated by the difference between the maximum power of the generators connected to the power system and the magnitude of loads, and the dynamic limit capacity is determined by considering dynamic stability of a power system frequency when the wind turbines drop out from a power system. Output of the dynamic model developed for wind turbine is based on the operating limit capacity and is controlled by blade pitch angle. To validate the effectiveness of the proposed control method, different case studies are conducted, with simulations for BESS and wind turbine using Power System Simulation for Engineering (PSS/E).

Suggested Citation

  • Dae-Hee Son & Muhammad Ali & Sang-Hee Kang & Jae-Haeng Heo & Soon-Ryul Nam, 2018. "A Method for Increasing the Operating Limit Capacity of Wind Farms Using Battery Energy Storage Systems with Rate of Change of Frequency," Energies, MDPI, vol. 11(4), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:758-:d:138321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Papathanassiou, Stavros A. & Boulaxis, Nikos G., 2006. "Power limitations and energy yield evaluation for wind farms operating in island systems," Renewable Energy, Elsevier, vol. 31(4), pages 457-479.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    2. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    3. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    4. Georgios N. Psarros & Stavros A. Papathanassiou, 2019. "Comparative Assessment of Priority Listing and Mixed Integer Linear Programming Unit Commitment Methods for Non-Interconnected Island Systems," Energies, MDPI, vol. 12(4), pages 1-23, February.
    5. Kaldellis, J.K. & Kavadias, K.A. & Filios, A.E., 2009. "A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1011-1023, July.
    6. Papaefthymiou, Stefanos V. & Lakiotis, Vasileios G. & Margaris, Ioannis D. & Papathanassiou, Stavros A., 2015. "Dynamic analysis of island systems with wind-pumped-storage hybrid power stations," Renewable Energy, Elsevier, vol. 74(C), pages 544-554.
    7. Carrión, Miguel & Domínguez, Ruth & Cañas-Carretón, Miguel & Zárate-Miñano, Rafael, 2019. "Scheduling isolated power systems considering electric vehicles and primary frequency response," Energy, Elsevier, vol. 168(C), pages 1192-1207.
    8. Pantelis A. Dratsas & Georgios N. Psarros & Stavros A. Papathanassiou, 2021. "Battery Energy Storage Contribution to System Adequacy," Energies, MDPI, vol. 14(16), pages 1-22, August.
    9. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    10. Kyungsung An & Kyung-Bin Song & Kyeon Hur, 2017. "Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration," Energies, MDPI, vol. 10(5), pages 1-15, May.
    11. Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2014. "Optimum sizing of wind-pumped-storage hybrid power stations in island systems," Renewable Energy, Elsevier, vol. 64(C), pages 187-196.
    12. Maria Panagiotidou & George Xydis & Christopher Koroneos, 2016. "Environmental Siting Framework for Wind Farms: A Case Study in the Dodecanese Islands," Resources, MDPI, vol. 5(3), pages 1-25, July.
    13. Aidan Tuohy & Ben Kaun & Robert Entriken, 2014. "Storage and demand-side options for integrating wind power," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 93-109, January.
    14. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    15. Psarros, Georgios N. & Nanou, Sotirios I. & Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2018. "Generation scheduling in non-interconnected islands with high RES penetration," Renewable Energy, Elsevier, vol. 115(C), pages 338-352.
    16. Zafirakis, D. & Kaldellis, J.K., 2009. "Economic evaluation of the dual mode CAES solution for increased wind energy contribution in autonomous island networks," Energy Policy, Elsevier, vol. 37(5), pages 1958-1969, May.
    17. Pablo Ledesma & Francisco Arredondo & Edgardo D. Castronuovo, 2017. "Optimal Curtailment of Non-Synchronous Renewable Generation on the Island of Tenerife Considering Steady State and Transient Stability Constraints," Energies, MDPI, vol. 10(11), pages 1-15, November.
    18. De Vos, Kristof & Petoussis, Andreas G. & Driesen, Johan & Belmans, Ronnie, 2013. "Revision of reserve requirements following wind power integration in island power systems," Renewable Energy, Elsevier, vol. 50(C), pages 268-279.
    19. Notton, Gilles, 2015. "Importance of islands in renewable energy production and storage: The situation of the French islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 260-269.
    20. Segurado, R. & Costa, M. & Duić, N. & Carvalho, M.G., 2015. "Integrated analysis of energy and water supply in islands. Case study of S. Vicente, Cape Verde," Energy, Elsevier, vol. 92(P3), pages 639-648.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:758-:d:138321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.