IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i1p1-15.html
   My bibliography  Save this article

Electrolysers as a load management mechanism for power systems with wind power and zero-carbon thermal power plant

Author

Listed:
  • Troncoso, E.
  • Newborough, M.

Abstract

For an isolated power system the deployment of a large stock of electrolysers is investigated as a means for increasing the penetrations of wind power plant and zero-carbon thermal power plant. Consideration is given to the sizing and utilization of an electrolyser stock for three electrolyser implementation cases and three operational strategies, installed capacity ranges of 20-100% for wind power and 10-35% for zero-carbon thermal power plant (as proportions of the power system's maximum electrical demand) were investigated. Relative to wind-hydrogen alone, hydrogen yields are substantially increased especially on low-wind days. The average load placed on fossil-fuelled power plant is substantially decreased (while achieving a virtually flat load profile) and the carbon intensity of electricity can be reduced to values of

Suggested Citation

  • Troncoso, E. & Newborough, M., 2010. "Electrolysers as a load management mechanism for power systems with wind power and zero-carbon thermal power plant," Applied Energy, Elsevier, vol. 87(1), pages 1-15, January.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:1:p:1-15
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00135-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papathanassiou, Stavros A. & Boulaxis, Nikos G., 2006. "Power limitations and energy yield evaluation for wind farms operating in island systems," Renewable Energy, Elsevier, vol. 31(4), pages 457-479.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    2. G. García Clúa, José & Mantz, Ricardo J. & De Battista, Hernán, 2011. "Evaluation of hydrogen production capabilities of a grid-assisted wind-H2 system," Applied Energy, Elsevier, vol. 88(5), pages 1857-1863, May.
    3. Wang, Dan & Zhou, Yue & Jia, Hongjie & Wang, Chengshan & Lu, Ning & Sui, Pang-Chieh & Fan, Menghua, 2016. "An energy-constrained state priority list model using deferrable electrolyzers as a load management mechanism," Applied Energy, Elsevier, vol. 167(C), pages 201-210.
    4. Weiliang Wang & Dan Wang & Hongjie Jia & Guixiong He & Qing’e Hu & Pang-Chieh Sui & Menghua Fan, 2017. "Performance Evaluation of a Hydrogen-Based Clean Energy Hub with Electrolyzers as a Self-Regulating Demand Response Management Mechanism," Energies, MDPI, vol. 10(8), pages 1-23, August.
    5. Kaya, Mehmet Fatih & Demir, Nesrin & Rees, Neil V. & El-Kharouf, Ahmad, 2020. "Improving PEM water electrolyser’s performance by magnetic field application," Applied Energy, Elsevier, vol. 264(C).
    6. Siracusano, Stefania & Baglio, Vincenzo & Van Dijk, Nicholas & Merlo, Luca & Aricò, Antonino Salvatore, 2017. "Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer," Applied Energy, Elsevier, vol. 192(C), pages 477-489.
    7. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    2. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    3. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    4. Georgios N. Psarros & Stavros A. Papathanassiou, 2019. "Comparative Assessment of Priority Listing and Mixed Integer Linear Programming Unit Commitment Methods for Non-Interconnected Island Systems," Energies, MDPI, vol. 12(4), pages 1-23, February.
    5. Kaldellis, J.K. & Kavadias, K.A. & Filios, A.E., 2009. "A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1011-1023, July.
    6. Papaefthymiou, Stefanos V. & Lakiotis, Vasileios G. & Margaris, Ioannis D. & Papathanassiou, Stavros A., 2015. "Dynamic analysis of island systems with wind-pumped-storage hybrid power stations," Renewable Energy, Elsevier, vol. 74(C), pages 544-554.
    7. Dae-Hee Son & Muhammad Ali & Sang-Hee Kang & Jae-Haeng Heo & Soon-Ryul Nam, 2018. "A Method for Increasing the Operating Limit Capacity of Wind Farms Using Battery Energy Storage Systems with Rate of Change of Frequency," Energies, MDPI, vol. 11(4), pages 1-22, March.
    8. Carrión, Miguel & Domínguez, Ruth & Cañas-Carretón, Miguel & Zárate-Miñano, Rafael, 2019. "Scheduling isolated power systems considering electric vehicles and primary frequency response," Energy, Elsevier, vol. 168(C), pages 1192-1207.
    9. Pantelis A. Dratsas & Georgios N. Psarros & Stavros A. Papathanassiou, 2021. "Battery Energy Storage Contribution to System Adequacy," Energies, MDPI, vol. 14(16), pages 1-22, August.
    10. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    11. Kyungsung An & Kyung-Bin Song & Kyeon Hur, 2017. "Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration," Energies, MDPI, vol. 10(5), pages 1-15, May.
    12. Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2014. "Optimum sizing of wind-pumped-storage hybrid power stations in island systems," Renewable Energy, Elsevier, vol. 64(C), pages 187-196.
    13. Maria Panagiotidou & George Xydis & Christopher Koroneos, 2016. "Environmental Siting Framework for Wind Farms: A Case Study in the Dodecanese Islands," Resources, MDPI, vol. 5(3), pages 1-25, July.
    14. Aidan Tuohy & Ben Kaun & Robert Entriken, 2014. "Storage and demand-side options for integrating wind power," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 93-109, January.
    15. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    16. Psarros, Georgios N. & Nanou, Sotirios I. & Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2018. "Generation scheduling in non-interconnected islands with high RES penetration," Renewable Energy, Elsevier, vol. 115(C), pages 338-352.
    17. Zafirakis, D. & Kaldellis, J.K., 2009. "Economic evaluation of the dual mode CAES solution for increased wind energy contribution in autonomous island networks," Energy Policy, Elsevier, vol. 37(5), pages 1958-1969, May.
    18. Pablo Ledesma & Francisco Arredondo & Edgardo D. Castronuovo, 2017. "Optimal Curtailment of Non-Synchronous Renewable Generation on the Island of Tenerife Considering Steady State and Transient Stability Constraints," Energies, MDPI, vol. 10(11), pages 1-15, November.
    19. De Vos, Kristof & Petoussis, Andreas G. & Driesen, Johan & Belmans, Ronnie, 2013. "Revision of reserve requirements following wind power integration in island power systems," Renewable Energy, Elsevier, vol. 50(C), pages 268-279.
    20. Notton, Gilles, 2015. "Importance of islands in renewable energy production and storage: The situation of the French islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 260-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:1:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.