IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6060-d641277.html
   My bibliography  Save this article

Design and Realization of a Hybrid Excited Flux Switching Vernier Machine for Renewable Energy Conversion

Author

Listed:
  • Haidar Diab

    (GREAH, Université Le Havre Normandie, 76600 Le Havre, France)

  • Yacine Amara

    (GREAH, Université Le Havre Normandie, 76600 Le Havre, France)

  • Sami Hlioui

    (SATIE, Conservatoire National des Arts et Métiers, 75003 Paris, France)

  • Johannes J. H. Paulides

    (Advanced Electromagnetics B.V., Industrieweg 78, 5145 PW Waalwijk, The Netherlands)

Abstract

This paper presents the design of a hybrid excited flux switching Vernier machine. This machine is designed to serve in renewable energy conversion applications, such as a wind turbine generator, or tidal turbine generator. After introducing this original structure, a design based on finite element models is conducted. The specifications correspond to relatively low power direct drive wind or tidal turbine applications. The rated power is set to 10 kW, with a rated speed of 300 rpm. Mainly the electromagnetic design is presented. Aspects related to the realization of a prototype are also presented, and an experimental study is included.

Suggested Citation

  • Haidar Diab & Yacine Amara & Sami Hlioui & Johannes J. H. Paulides, 2021. "Design and Realization of a Hybrid Excited Flux Switching Vernier Machine for Renewable Energy Conversion," Energies, MDPI, vol. 14(19), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6060-:d:641277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Qingsong & Niu, Shuangxia, 2017. "Overview of flux-controllable machines: Electrically excited machines, hybrid excited machines and memory machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 475-491.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustav Mörée & Mats Leijon, 2022. "Overview of Hybrid Excitation in Electrical Machines," Energies, MDPI, vol. 15(19), pages 1-38, October.
    2. Yang, Yang & Fu, Jianbin & Shi, Zhaobin & Ma, Lu & Yu, Jie & Fang, Fang & Chen, Shunhua & Lin, Zaibin & Li, Chun, 2023. "Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects," Renewable Energy, Elsevier, vol. 216(C).
    3. Audrius Bagdanavicius, 2022. "Energy and Exergy Analysis of Renewable Energy Conversion Systems," Energies, MDPI, vol. 15(15), pages 1-2, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziqi Huang & Xing Zhao & Weiyu Wang & Shuangxia Niu, 2022. "Hybrid Reluctance Machine with Skewed Permanent Magnets and Zero-Sequence Current Excitation," Energies, MDPI, vol. 15(22), pages 1-17, November.
    2. Xiaodong Zhang & Xing Zhao & Shuangxia Niu, 2019. "A Novel Dual-Structure Parallel Hybrid Excitation Machine for Electric Vehicle Propulsion," Energies, MDPI, vol. 12(3), pages 1-11, January.
    3. Qingsong Wang & Shuangxia Niu, 2018. "A Novel DC-Coil-Free Hybrid-Excited Machine with Consequent-Pole PM Rotor," Energies, MDPI, vol. 11(4), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6060-:d:641277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.