IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p568-d134974.html
   My bibliography  Save this article

Energy Flexometer: Transactive Energy-Based Internet of Things Technology

Author

Listed:
  • Muhammad Babar

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Krakow 30-059, Poland
    Electrical Energy Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5612AJ, The Netherlands)

  • Jakub Grela

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Krakow 30-059, Poland)

  • Andrzej Ożadowicz

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Krakow 30-059, Poland)

  • Phuong H. Nguyen

    (Electrical Energy Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5612AJ, The Netherlands)

  • Zbigniew Hanzelka

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Krakow 30-059, Poland)

  • I. G. Kamphuis

    (Electrical Energy Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5612AJ, The Netherlands)

Abstract

Effective Energy Management with an active Demand Response (DR) is crucial for future smart energy system. Increasing number of Distributed Energy Resources (DER), local microgrids and prosumers have an essential and real influence on present power distribution system and generate new challenges in power, energy and demand management. A relatively new paradigm in this field is transactive energy (TE), with its value and market-based economic and technical mechanisms to control energy flows. Due to a distributed structure of present and future power system, the Internet of Things (IoT) environment is needed to fully explore flexibility potential from the end-users and prosumers, to offer a bid to involved actors of the smart energy system. In this paper, new approach to connect the market-driven (bottom-up) DR program with current demand-driven (top-down) energy management system (EMS) is presented. Authors consider multi-agent system (MAS) to realize the approach and introduce a concept and standardize the design of new Energy Flexometer. It is proposed as a fundamental agent in the method. Three different functional blocks have been designed and presented as an IoT platform logical interface according to the LonWorks technology. An evaluation study has been performed as well. Results presented in the paper prove the proposed concept and design.

Suggested Citation

  • Muhammad Babar & Jakub Grela & Andrzej Ożadowicz & Phuong H. Nguyen & Zbigniew Hanzelka & I. G. Kamphuis, 2018. "Energy Flexometer: Transactive Energy-Based Internet of Things Technology," Energies, MDPI, vol. 11(3), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:568-:d:134974
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    2. Gabriele Lobaccaro & Salvatore Carlucci & Erica Löfström, 2016. "A Review of Systems and Technologies for Smart Homes and Smart Grids," Energies, MDPI, vol. 9(5), pages 1-33, May.
    3. Junjie Hu & Guangya Yang & Yusheng Xue, 2017. "Economic Assessment of Network-Constrained Transactive Energy for Managing Flexible Demand in Distribution Systems," Energies, MDPI, vol. 10(5), pages 1-16, May.
    4. Klaassen, E.A.M. & Kobus, C.B.A. & Frunt, J. & Slootweg, J.G., 2016. "Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 1065-1074.
    5. Omid Abrishambaf & Pedro Faria & Luis Gomes & João Spínola & Zita Vale & Juan M. Corchado, 2017. "Implementation of a Real-Time Microgrid Simulation Platform Based on Centralized and Distributed Management," Energies, MDPI, vol. 10(6), pages 1-14, June.
    6. Wei Fan & Nian Liu & Jianhua Zhang, 2016. "An Event-Triggered Online Energy Management Algorithm of Smart Home: Lyapunov Optimization Approach," Energies, MDPI, vol. 9(5), pages 1-24, May.
    7. Islam, Saiful & Woyte, Achim & Belmans, Ronnie & Heskes, P.J.M. & Rooij, P.M., 2006. "Investigating performance, reliability and safety parameters of photovoltaic module inverter: Test results and compliances with the standards," Renewable Energy, Elsevier, vol. 31(8), pages 1157-1181.
    8. Papaefthymiou, G. & Dragoon, Ken, 2016. "Towards 100% renewable energy systems: Uncapping power system flexibility," Energy Policy, Elsevier, vol. 92(C), pages 69-82.
    9. Most Nahida Akter & Md Apel Mahmud & Amanullah Maung Than Oo, 2017. "A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids," Energies, MDPI, vol. 10(12), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerardo J. Osório & Miadreza Shafie-khah & Mohamed Lotfi & Bernardo J. M. Ferreira-Silva & João P. S. Catalão, 2019. "Demand-Side Management of Smart Distribution Grids Incorporating Renewable Energy Sources," Energies, MDPI, vol. 12(1), pages 1-23, January.
    2. Daniel Prusak & Grzegorz Karpiel & Konrad Kułakowski, 2021. "The Architecture of a Real-Time Control System for Heating Energy Management in the Intelligent Building," Energies, MDPI, vol. 14(17), pages 1-13, August.
    3. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Milos Maryska & Petr Doucek & Pavel Sladek & Lea Nedomova, 2019. "Economic Efficiency of the Internet of Things Solution in the Energy Industry: A Very High Voltage Frosting Case Study," Energies, MDPI, vol. 12(4), pages 1-16, February.
    5. Janko, Samantha A. & Johnson, Nathan G., 2018. "Scalable multi-agent microgrid negotiations for a transactive energy market," Applied Energy, Elsevier, vol. 229(C), pages 715-727.
    6. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2019. "Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles," Energies, MDPI, vol. 12(22), pages 1-22, November.
    7. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    8. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Ożadowicz, 2017. "A New Concept of Active Demand Side Management for Energy Efficient Prosumer Microgrids with Smart Building Technologies," Energies, MDPI, vol. 10(11), pages 1-22, November.
    2. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    4. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    5. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    6. Marzullo, Thibault & Keane, Marcus M. & Geron, Marco & Monaghan, Rory F.D., 2019. "A computational toolchain for the automatic generation of multiple Reduced-Order Models from CFD simulations," Energy, Elsevier, vol. 180(C), pages 511-519.
    7. Leonid Gitelman & Mikhail Kozhevnikov, 2017. "Electrification as a Development Driver for “Smart Citiesâ€," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 1199-1210.
    8. Zini, Gabriele & Mangeant, Christophe & Merten, Jens, 2011. "Reliability of large-scale grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 36(9), pages 2334-2340.
    9. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    10. Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
    11. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    12. Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
    13. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    14. Severinsen, A. & Myrland, Ø., 2022. "ShinyRBase: Near real-time energy saving models using reactive programming," Applied Energy, Elsevier, vol. 325(C).
    15. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    16. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    17. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    18. Gharibpour, Hassan & Aminifar, Farrokh & Rahmati, Iman & Keshavarz, Arezou, 2021. "Dual variable decomposition to discriminate the cost imposed by inflexible units in electricity markets," Applied Energy, Elsevier, vol. 287(C).
    19. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:568-:d:134974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.