IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p585-d205397.html
   My bibliography  Save this article

Economic Efficiency of the Internet of Things Solution in the Energy Industry: A Very High Voltage Frosting Case Study

Author

Listed:
  • Milos Maryska

    (Department of Information Technologies, University of Economics, 130 67 Prague, Czech Republic)

  • Petr Doucek

    (Department of System Analysis, University of Economics, 130 67 Prague, Czech Republic)

  • Pavel Sladek

    (Department of Information Technologies, University of Economics, 130 67 Prague, Czech Republic)

  • Lea Nedomova

    (Department of System Analysis, University of Economics, 130 67 Prague, Czech Republic)

Abstract

This article deals with the deployment of an Internet of Things (IoT) technology within the energy industry (energy distribution) in the Czech Republic. The first part of the article is devoted to an assessment of the perspectives for developing IoT applications and implementing them within the economy, and then examines how the principles of multi-criteria decision-making are used to select IoT technologies for deployment in the energy industry. The selection of technology is also followed by the selection of the specific application with the highest potential benefit for the company using such a method to select the technology. The selection solution is demonstrated and further discussed from the technological and financial standpoints and illustrated via the example of choosing among two alternatives for a real-world application, very high voltage (VHV) frosting (in electric power transmission engineering, which is usually considered as any voltage between 52,000 and 300,000 V). The application solution is analyzed by how it relates to the direct vs indirect measurement of glaze ice. The result of this technical and financial analysis was that the direct glaze ice measurement variant is clearly the more advantageous one. The direct-measurement variant has a three-year payoff period, compared to six years for indirect measurement. Further, the benefits from the direct-measurement variant are 2.25 times larger than the other variant, and the five-year net profit value amounts to a profit for the direct-measurement variant while it results in a financial loss for the indirect-measurement variant. The recommended variant is to measure the icing of VHV lines directly.

Suggested Citation

  • Milos Maryska & Petr Doucek & Pavel Sladek & Lea Nedomova, 2019. "Economic Efficiency of the Internet of Things Solution in the Energy Industry: A Very High Voltage Frosting Case Study," Energies, MDPI, vol. 12(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:585-:d:205397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rehman Abdul & Anand Paul & Junaid Gul M. & Won-Hwa Hong & Hyuncheol Seo, 2018. "Exploiting Small World Problems in a SIoT Environment," Energies, MDPI, vol. 11(8), pages 1-18, August.
    2. Shancang Li & Li Da Xu & Shanshan Zhao, 2015. "The internet of things: a survey," Information Systems Frontiers, Springer, vol. 17(2), pages 243-259, April.
    3. Vishal Sharma & Ilsun You & Giovanni Pau & Mario Collotta & Jae Deok Lim & Jeong Nyeo Kim, 2018. "LoRaWAN-Based Energy-Efficient Surveillance by Drones for Intelligent Transportation Systems," Energies, MDPI, vol. 11(3), pages 1-26, March.
    4. Andrew Whitmore & Anurag Agarwal & Li Xu, 2015. "The Internet of Things—A survey of topics and trends," Information Systems Frontiers, Springer, vol. 17(2), pages 261-274, April.
    5. Tae Yeong Kim & Dong In Kim, 2018. "Novel Sparse-Coded Ambient Backscatter Communication for Massive IoT Connectivity," Energies, MDPI, vol. 11(7), pages 1-25, July.
    6. Milos Maryska & Petr Doucek & Lea Nedomova & Pavel Sladek, 2018. "The Energy Industry in the Czech Republic: On the Way to the Internet of Things," Economies, MDPI, vol. 6(2), pages 1-13, June.
    7. Bahram Shakerighadi & Amjad Anvari-Moghaddam & Juan C. Vasquez & Josep M. Guerrero, 2018. "Internet of Things for Modern Energy Systems: State-of-the-Art, Challenges, and Open Issues," Energies, MDPI, vol. 11(5), pages 1-23, May.
    8. Muhammad Babar & Jakub Grela & Andrzej Ożadowicz & Phuong H. Nguyen & Zbigniew Hanzelka & I. G. Kamphuis, 2018. "Energy Flexometer: Transactive Energy-Based Internet of Things Technology," Energies, MDPI, vol. 11(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mussawir Ul Mehmood & Abasin Ulasyar & Abraiz Khattak & Kashif Imran & Haris Sheh Zad & Shibli Nisar, 2020. "Cloud Based IoT Solution for Fault Detection and Localization in Power Distribution Systems," Energies, MDPI, vol. 13(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arfi, Wissal Ben & Nasr, Imed Ben & Kondrateva, Galina & Hikkerova, Lubica, 2021. "The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    2. Hong Jiang & Shuyu Sun & Hongtao Xu & Shukuan Zhao & Yong Chen, 2020. "Enterprises' network structure and their technology standardization capability in Industry 4.0," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 749-765, July.
    3. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    4. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    5. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    6. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    7. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.
    8. Payam Hanafizadeh & Parastou Hatami & Morteza Analoui & Amir Albadvi, 2021. "Business model innovation driven by the internet of things technology, in internet service providers’ business context," Information Systems and e-Business Management, Springer, vol. 19(4), pages 1175-1243, December.
    9. Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.
    10. Oscar Brousse & Charles H. Simpson & Ate Poorthuis & Clare Heaviside, 2024. "Unequal distributions of crowdsourced weather data in England and Wales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Pan Wang & Ricardo Valerdi & Shangming Zhou & Ling Li, 2015. "Introduction: Advances in IoT research and applications," Information Systems Frontiers, Springer, vol. 17(2), pages 239-241, April.
    12. Shang, Juan & Li, Pengfei & Li, Ling & Chen, Yong, 2018. "The relationship between population growth and capital allocation in urbanization," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 249-256.
    13. Jens Passlick & Sonja Dreyer & Daniel Olivotti & Lukas Grützner & Dennis Eilers & Michael H. Breitner, 2021. "Predictive maintenance as an internet of things enabled business model: A taxonomy," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 67-87, March.
    14. Salvatore T. March & Gary D. Scudder, 2019. "Predictive maintenance: strategic use of IT in manufacturing organizations," Information Systems Frontiers, Springer, vol. 21(2), pages 327-341, April.
    15. Belfiore, Alessandra & Cuccurullo, Corrado & Aria, Massimo, 2022. "IoT in healthcare: A scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    16. Tussyadiah, Iis, 2020. "A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on Artificial Intelligence and Robotics in Tourism," Annals of Tourism Research, Elsevier, vol. 81(C).
    17. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    18. Dameri, Renata Paola & Benevolo, Clara & Veglianti, Eleonora & Li, Yaya, 2019. "Understanding smart cities as a glocal strategy: A comparison between Italy and China," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 26-41.
    19. Federica Cena & Silvia Likavec & Amon Rapp, 2019. "Real World User Model: Evolution of User Modeling Triggered by Advances in Wearable and Ubiquitous Computing," Information Systems Frontiers, Springer, vol. 21(5), pages 1085-1110, October.
    20. Muhammad Tahir & Muhammad Sardaraz & Shakoor Muhammad & Muhammad Saud Khan, 2020. "A Lightweight Authentication and Authorization Framework for Blockchain-Enabled IoT Network in Health-Informatics," Sustainability, MDPI, vol. 12(17), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:585-:d:205397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.