IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v119y2018icp410-420.html
   My bibliography  Save this article

Criteria for particles to be levitated and to move continuously on traveling-wave electric curtain for dust mitigation on solar panels

Author

Listed:
  • Zhang, Jie
  • Zhou, Chuande
  • Tang, Yike
  • Zheng, Fuzhong
  • Meng, Minghui
  • Miao, Chunzheng

Abstract

Dust accumulation on solar panels reduces power-generation efficiency significantly and even shortens service life of an equipment. Traveling-wave electric curtain technique is effective for removing dust on solar panels. The key issue of removing dust by electric curtain is the directional transport of dust. The continuous motion mode (A new motion mode proposed in this paper. In this mode a particle is transported continuously in one direction) is advantageous to directional transport. The criteria for continuous motion mode are derived by analyzing two jointly sufficient conditions: one is referred to as being continuously levitated from the dielectric surface and the other is being transported continuously in one direction. Levitation and movement analyses indicate that a particle in the “true movable area” can be levitated and transported continuously in one direction if particle acceleration complies with certain conditions; otherwise the particle motion will degenerate into reciprocating motion, but afterward the motion will shift to continuous motion if the x-component of velocity increases to a certain amount.

Suggested Citation

  • Zhang, Jie & Zhou, Chuande & Tang, Yike & Zheng, Fuzhong & Meng, Minghui & Miao, Chunzheng, 2018. "Criteria for particles to be levitated and to move continuously on traveling-wave electric curtain for dust mitigation on solar panels," Renewable Energy, Elsevier, vol. 119(C), pages 410-420.
  • Handle: RePEc:eee:renene:v:119:y:2018:i:c:p:410-420
    DOI: 10.1016/j.renene.2017.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117312053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klugmann-Radziemska, Ewa, 2015. "Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland," Renewable Energy, Elsevier, vol. 78(C), pages 418-426.
    2. Qian, D. & Marshall, J.S. & Frolik, J., 2012. "Control analysis for solar panel dust mitigation using an electric curtain," Renewable Energy, Elsevier, vol. 41(C), pages 134-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pankaj Borah & Leonardo Micheli & Nabin Sarmah, 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches," Sustainability, MDPI, vol. 15(24), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    2. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.
    3. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    6. Weiliang Liu & Changliang Liu & Yongjun Lin & Liangyu Ma & Feng Xiong & Jintuo Li, 2018. "Ultra-Short-Term Forecast of Photovoltaic Output Power under Fog and Haze Weather," Energies, MDPI, vol. 11(3), pages 1-22, February.
    7. Borislav Stankov & Angel Terziev & Momchil Vassilev & Martin Ivanov, 2024. "Influence of Wind and Rainfall on the Performance of a Photovoltaic Module in a Dusty Environment," Energies, MDPI, vol. 17(14), pages 1-29, July.
    8. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    9. Jha, Aprajeeta & Tripathy, P.P., 2019. "Heat transfer modeling and performance evaluation of photovoltaic system in different seasonal and climatic conditions," Renewable Energy, Elsevier, vol. 135(C), pages 856-865.
    10. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.
    11. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    12. Chen, Jinxin & Pan, Guobing & Ouyang, Jing & Ma, Jin & Fu, Lei & Zhang, Libin, 2020. "Study on impacts of dust accumulation and rainfall on PV power reduction in East China," Energy, Elsevier, vol. 194(C).
    13. Sergio Bemposta Rosende & Javier Sánchez-Soriano & Carlos Quiterio Gómez Muñoz & Javier Fernández Andrés, 2020. "Remote Management Architecture of UAV Fleets for Maintenance, Surveillance, and Security Tasks in Solar Power Plants," Energies, MDPI, vol. 13(21), pages 1-23, November.
    14. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    15. Eke, R. & Betts, T.R. & Gottschalg, R.,, 2017. "Spectral irradiance effects on the outdoor performance of photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 429-434.
    16. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    17. Giuseppe Piras & Adriana Scarlet Sferra, 2024. "Environmental Product Declarations as a Data Source for the Assessment of Environmental Impacts during the Use Phase of Photovoltaic Modules: Critical Issues and Potential," Energies, MDPI, vol. 17(2), pages 1-19, January.
    18. Pankaj Borah & Leonardo Micheli & Nabin Sarmah, 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    19. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    20. Hu, Weiwei & Li, Xingcai & Wang, Juan & Tian, Zihang & Zhou, Bin & Wu, Jinpeng & Li, Runmin & Li, Wencang & Ma, Ning & Kang, Jixuan & Wang, Yong & Tian, Jialong & Dai, Jibin, 2022. "Experimental research on the convective heat transfer coefficient of photovoltaic panel," Renewable Energy, Elsevier, vol. 185(C), pages 820-826.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:119:y:2018:i:c:p:410-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.