IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p99-d125177.html
   My bibliography  Save this article

Renewable Energy Assisted Traffic Aware Cellular Base Station Energy Cooperation

Author

Listed:
  • Faran Ahmed

    (Department of Electrical Engineering, COMSATS Institute of Information Technology, Wah 47040, Pakistan)

  • Muhammad Naeem

    (Department of Electrical Engineering, COMSATS Institute of Information Technology, Wah 47040, Pakistan)

  • Waleed Ejaz

    (Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada)

  • Muhammad Iqbal

    (Department of Electrical Engineering, COMSATS Institute of Information Technology, Wah 47040, Pakistan)

  • Alagan Anpalagan

    (Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada)

  • Hyung Seok Kim

    (Department of Information and Communication Engineering, Sejong University, Seoul 05006, Korea)

Abstract

With global concern for climate change, and for cutting down the energy cost, especially in off grid areas, use of renewable energy has been gaining widespread attention in many areas including cellular communication. The base station (BS) has emerged as a strong candidate for the integration of renewable energy sources (RES), particularly solar and wind. The incorporation of renewable energy opens many possibilities for energy conservation through strategies such as energy cooperation between BSs during the off-peak hours, when the energy harvested from renewable energy sources may become surplus. In this paper, we present the case for cellular BSs enabled with renewable energy sources (RES) to have an arrangement in which the BS provide surplus energy to a neighboring BS, thus minimizing the use of conventional energy. A realistic objective is developed for northern region of Pakistan, which entails modeling of solar panels and wind-turbine according to the average solar irradiation and wind speed of the region. We also model the dynamic load of the BS, which depicts temporal fluctuations with traffic variations. Based on these models we initiate an energy cooperation scheme between the BS in which an energy cost minimization framework is mathematically modeled and solved through the interior point method algorithm. Results are obtained for different times of the year for different number of base stations showing respective energy cost savings.

Suggested Citation

  • Faran Ahmed & Muhammad Naeem & Waleed Ejaz & Muhammad Iqbal & Alagan Anpalagan & Hyung Seok Kim, 2018. "Renewable Energy Assisted Traffic Aware Cellular Base Station Energy Cooperation," Energies, MDPI, vol. 11(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:99-:d:125177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/99/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/99/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Chiaraviglio & Marco Listanti & Edoardo Manzia, 2015. "Life is Short: The Impact of Power States on Base Station Lifetime," Energies, MDPI, vol. 8(12), pages 1-20, December.
    2. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    3. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    4. Diaf, S. & Diaf, D. & Belhamel, M. & Haddadi, M. & Louche, A., 2007. "A methodology for optimal sizing of autonomous hybrid PV/wind system," Energy Policy, Elsevier, vol. 35(11), pages 5708-5718, November.
    5. Byung Moo Lee & Youngok Kim, 2016. "Design of an Energy Efficient Future Base Station with Large-Scale Antenna System," Energies, MDPI, vol. 9(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Ozaveshe Oviroh & Tien-Chien Jen, 2018. "The Energy Cost Analysis of Hybrid Systems and Diesel Generators in Powering Selected Base Transceiver Station Locations in Nigeria," Energies, MDPI, vol. 11(3), pages 1-20, March.
    2. Khondoker Ziaul Islam & Md. Sanwar Hossain & B. M. Ruhul Amin & G. M. Shafiullah & Ferdous Sohel, 2022. "Renewable Energy-Based Energy-Efficient Off-Grid Base Stations for Heterogeneous Network," Energies, MDPI, vol. 16(1), pages 1-33, December.
    3. Mahshid Javidsharifi & Hamoun Pourroshanfekr & Tamas Kerekes & Dezso Sera & Sergiu Spataru & Josep M. Guerrero, 2021. "Optimum Sizing of Photovoltaic and Energy Storage Systems for Powering Green Base Stations in Cellular Networks," Energies, MDPI, vol. 14(7), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    2. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Active Distribution Network Modeling for Enhancing Sustainable Power System Performance; a Case Study in Egypt," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    3. Byung Moo Lee, 2017. "Energy Efficiency Gain of Cellular Base Stations with Large-Scale Antenna Systems for Green Information and Communication Technology," Sustainability, MDPI, vol. 9(7), pages 1-18, June.
    4. Khiareddine, Abla & Ben Salah, Chokri & Rekioua, Djamila & Mimouni, Mohamed Faouzi, 2018. "Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system," Energy, Elsevier, vol. 153(C), pages 743-762.
    5. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    6. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    7. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    8. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    9. Mohammed H. Alsharif & Jeong Kim, 2016. "Hybrid Off-Grid SPV/WTG Power System for Remote Cellular Base Stations Towards Green and Sustainable Cellular Networks in South Korea," Energies, MDPI, vol. 10(1), pages 1-23, December.
    10. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    11. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    12. Yohwan Choi & Hongseok Kim, 2016. "Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost," Energies, MDPI, vol. 9(6), pages 1-19, June.
    13. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    14. Wissem, Zghal & Gueorgui, Kantchev & Hédi, Kchaou, 2012. "Modeling and technical–economic optimization of an autonomous photovoltaic system," Energy, Elsevier, vol. 37(1), pages 263-272.
    15. Jiang, X.S. & Jing, Z.X. & Li, Y.Z. & Wu, Q.H. & Tang, W.H., 2014. "Modelling and operation optimization of an integrated energy based direct district water-heating system," Energy, Elsevier, vol. 64(C), pages 375-388.
    16. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    17. James Hamilton & Michael Negnevitsky & Xiaolin Wang & Evgenii Semshchikov, 2020. "The Role of Low-Load Diesel in Improved Renewable Hosting Capacity within Isolated Power Systems," Energies, MDPI, vol. 13(16), pages 1-15, August.
    18. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    19. Hamed Moazami Goodarzi & Mohammad Hosein Kazemi, 2017. "A Novel Optimal Control Method for Islanded Microgrids Based on Droop Control Using the ICA-GA Algorithm," Energies, MDPI, vol. 10(4), pages 1-17, April.
    20. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part I: Problem formulation and model development," Renewable Energy, Elsevier, vol. 36(2), pages 459-465.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:99-:d:125177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.