IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p206-d127050.html
   My bibliography  Save this article

Comparison of Greenhouse Gas Reduction Potential through Renewable Energy Transition in South Korea and Germany

Author

Listed:
  • Alexander Maennel

    (New & Renewable Energy Resource & Policy Center, Korea Institute of Energy Research, Daejeon 34129, Korea
    Bosch Rexroth AG, Bgm.-Dr.-Nebel-Strasse 2, 97816 Lohr an Main, Germany)

  • Hyun-Goo Kim

    (New & Renewable Energy Resource & Policy Center, Korea Institute of Energy Research, Daejeon 34129, Korea)

Abstract

Germany and South Korea are the world’s sixth and seventh largest emitters of greenhouse gases, respectively; their main sources of pollution being fossil-fueled power plants. Since both countries signed the Paris Agreement in 2016, renewable energy transition is emerging as an effective means and method for avoiding air pollutant emissions and for replacing old fossil-fueled power plants. This paper attempts to evaluate—by using a grid emission factor dependent on a series of energy mix scenarios—the potential for South Korea and Germany to reduce their air pollutants (CO 2 , NO x , SO x , PM (particulate matter)) until 2030. South Korea plans to reduce greenhouse gas emissions by increasing nuclear power, while Germany aims to do so by shutting down its nuclear power plants and expanding the proportion of renewable energy in the energy mix to over 50%. Therefore, both countries are able to achieve their voluntary greenhouse gas reduction targets in the power sector. However, since the uncertainty of the CO 2 emission factor of coal power plants in South Korea is as high as 10%, efforts to reduce that uncertainty are required in order to produce a reliable assessment of the avoided emissions.

Suggested Citation

  • Alexander Maennel & Hyun-Goo Kim, 2018. "Comparison of Greenhouse Gas Reduction Potential through Renewable Energy Transition in South Korea and Germany," Energies, MDPI, vol. 11(1), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:206-:d:127050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeon, Eui-Chan & Myeong, Soojeong & Sa, Jae-Whan & Kim, Jinsu & Jeong, Jae-Hak, 2010. "Greenhouse gas emission factor development for coal-fired power plants in Korea," Applied Energy, Elsevier, vol. 87(1), pages 205-210, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    2. Maciej Bajerlein & Wojciech Karpiuk & Rafał Smolec, 2021. "Use of Gas Desorption Effect in Injection Systems of Diesel Engines," Energies, MDPI, vol. 14(1), pages 1-22, January.
    3. Seungkook Roh & Hae-Gyung Geong, 2021. "Extending the Coverage of the Trust–Acceptability Model: The Negative Effect of Trust in Government on Nuclear Power Acceptance in South Korea under a Nuclear Phase-Out Policy," Energies, MDPI, vol. 14(11), pages 1-19, June.
    4. Nils Seckinger & Peter Radgen, 2021. "Dynamic Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power System until 2050," Energies, MDPI, vol. 14(9), pages 1-22, April.
    5. Zobeidi, Tahereh & Komendantova, Nadejda & Yazdanpanah, Masoud, 2022. "Social media as a driver of the use of renewable energy: The perceptions of instagram users in Iran," Energy Policy, Elsevier, vol. 161(C).
    6. Ali, Amjad & Esposito, Luca & Gatto, Andrea, 2023. "Energy transition and public behavior in Italy: A structural equation modeling," Resources Policy, Elsevier, vol. 85(PB).
    7. Qingchang Li & Seungkook Roh & Jin Won Lee, 2020. "Segmenting the South Korean Public According to Their Preferred Direction for Electricity Mix Reform," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    8. Gungor, Gorkem & Sari, Ramazan, 2022. "Nuclear power and climate policy integration in developed and developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    10. Nur Ayeesha Qisteena Muzir & Md. Rayid Hasan Mojumder & Md. Hasanuzzaman & Jeyraj Selvaraj, 2022. "Challenges of Electric Vehicles and Their Prospects in Malaysia: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-40, July.
    11. Roy, S. & Lam, Y.F. & Hossain, M.U. & Chan, J.C.L., 2022. "Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Tingzhu Li & Debin Du & Xueli Wang & Xionghe Qin, 2022. "Can Nuclear Power Products Mitigate Greenhouse Gas Emissions? Evidence from Global Trade Network," IJERPH, MDPI, vol. 19(13), pages 1-25, June.
    13. Marta Bottero & Federico Dell’Anna & Vito Morgese, 2021. "Evaluating the Transition Towards Post-Carbon Cities: A Literature Review," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    14. Alba Vilanova & Bo-Young Kim & Chang Ki Kim & Hyun-Goo Kim, 2020. "Linear-Gompertz Model-Based Regression of Photovoltaic Power Generation by Satellite Imagery-Based Solar Irradiance," Energies, MDPI, vol. 13(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Szyba & Jerzy Mikulik, 2022. "Energy Production from Biodegradable Waste as an Example of the Circular Economy," Energies, MDPI, vol. 15(4), pages 1-16, February.
    2. Ko, Ahyun & Myung, Cha-Lee & Park, Simsoo & Kwon, Sangil, 2014. "Scenario-based CO2 emissions reduction potential and energy use in Republic of Korea’s passenger vehicle fleet," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 346-356.
    3. Shangli Zhou & Hengjing He & Leping Zhang & Wei Zhao & Fei Wang, 2023. "A Data-Driven Method to Monitor Carbon Dioxide Emissions of Coal-Fired Power Plants," Energies, MDPI, vol. 16(4), pages 1-27, February.
    4. Dong, Ruifeng & Lu, Hongfang & Yu, Yunsong & Zhang, Zaoxiao, 2012. "A feasible process for simultaneous removal of CO2, SO2 and NOx in the cement industry by NH3 scrubbing," Applied Energy, Elsevier, vol. 97(C), pages 185-191.
    5. Kai Ou & Yu Shi & Wenwen Zhou, 2024. "An Evolutionary Game Study on Green Technology Innovation of Coal Power Firms under the Dual-Regulatory System," Energies, MDPI, vol. 17(3), pages 1-21, January.
    6. López-Sabirón, Ana M. & Royo, Patricia & Ferreira, Victor J. & Aranda-Usón, Alfonso & Ferreira, Germán, 2014. "Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption," Applied Energy, Elsevier, vol. 135(C), pages 616-624.
    7. AkbostancI, Elif & Tunç, Gül Ipek & Türüt-AsIk, Serap, 2011. "CO2 emissions of Turkish manufacturing industry: A decomposition analysis," Applied Energy, Elsevier, vol. 88(6), pages 2273-2278, June.
    8. Lin, Y.L. & Chen, S.T. & Zheng, N.Y. & Wang, H.C., 2023. "Green sludge dewatering and recycling technology for generating renewable energy and liquid nutrients: Bench- and pilot-scale studies," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:206-:d:127050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.