IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3440-d189089.html
   My bibliography  Save this article

System Design and Energy Management for a Fuel Cell/Battery Hybrid Forklift

Author

Listed:
  • Zhiyu You

    (Key Laboratory of Electronic Information (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu 610041, China)

  • Liwei Wang

    (Key Laboratory of Electronic Information (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu 610041, China)

  • Ying Han

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Firuz Zare

    (Power and Energy Group, University of Queensland, Brisbane, QLD 4072, Australia)

Abstract

Electric forklifts, dominantly powered by lead acid batteries, are widely used for material handling in factories, warehouses, and docks. The long charging time and short working time characteristics of the lead acid battery module results in the necessity of several battery modules to support one forklift. Compared with the cost and time consuming lead acid battery charging system, a fuel cell/battery hybrid power module could be more convenient for a forklift with fast hydrogen refueling and long working time. In this paper, based on the characteristics of a fuel cell and a battery, a prototype hybrid forklift with a fuel cell/battery hybrid power system is constructed, and its hardware and software are designed in detail. According to the power demand of driver cycles and the state of charge ( SOC ) of battery, an energy management strategy based on load current following for the hybrid forklift is proposed to improve system energy efficiency and dynamic response performance. The proposed energy management strategy will fulfill the power requirements under typical driving cycles, achieve reasonable power distribution between the fuel cell and battery and, thus, prolong its continuous working time. The proposed energy management strategy is implemented in the hybrid forklift prototype and its effectiveness is tested under different operating conditions. The results show that the forklift with the proposed hybrid powered strategy has good performance with different loads, both lifting and moving, in a smooth and steady way, and the output of the fuel cell meets the requirements of its output characteristics, its SOC of battery remaining at a reasonable level.

Suggested Citation

  • Zhiyu You & Liwei Wang & Ying Han & Firuz Zare, 2018. "System Design and Energy Management for a Fuel Cell/Battery Hybrid Forklift," Energies, MDPI, vol. 11(12), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3440-:d:189089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Majlan, E.H. & Wan Daud, W.R., 2015. "A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 802-814.
    2. Ettihir, K. & Boulon, L. & Agbossou, K., 2016. "Optimization-based energy management strategy for a fuel cell/battery hybrid power system," Applied Energy, Elsevier, vol. 163(C), pages 142-153.
    3. M. Sabri, M.F. & Danapalasingam, K.A. & Rahmat, M.F., 2016. "A review on hybrid electric vehicles architecture and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1433-1442.
    4. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    5. Ying Han & Weirong Chen & Qi Li, 2017. "Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid," Energies, MDPI, vol. 10(1), pages 1-15, January.
    6. Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkadiusz Adamczyk, 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells," Energies, MDPI, vol. 13(19), pages 1-15, October.
    2. Nicu Bizon & Valentin Alexandru Stan & Angel Ciprian Cormos, 2019. "Optimization of the Fuel Cell Renewable Hybrid Power System Using the Control Mode of the Required Load Power on the DC Bus," Energies, MDPI, vol. 12(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu & Thounthong, Phatiphat, 2018. "Real-time strategies to optimize the fueling of the fuel cell hybrid power source: A review of issues, challenges and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1089-1102.
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Development of energy management system based on a rule-based power distribution strategy for hybrid power sources," Energy, Elsevier, vol. 175(C), pages 1055-1066.
    4. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    5. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    6. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    8. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    9. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    10. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    11. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    12. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    13. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Marcus Evandro Teixeira Souza Junior & Luiz Carlos Gomes Freitas, 2022. "Power Electronics for Modern Sustainable Power Systems: Distributed Generation, Microgrids and Smart Grids—A Review," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    15. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    16. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    17. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    18. Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
    19. Zhao, Chen & Zu, Bingfeng & Xu, Yuliang & Wang, Zhen & Zhou, Jianwei & Liu, Lina, 2020. "Design and analysis of an engine-start control strategy for a single-shaft parallel hybrid electric vehicle," Energy, Elsevier, vol. 202(C).
    20. Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3440-:d:189089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.