IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3262-d185032.html
   My bibliography  Save this article

Laboratory Investigation on Hydrodynamic Performance of an Innovative Aeration Device with a Wave-Driven Heaving Buoy

Author

Listed:
  • Zegao Yin

    (Engineering College, Ocean University of China, Qingdao, 266100, China
    Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100, China)

  • Yanxu Wang

    (Engineering College, Ocean University of China, Qingdao, 266100, China)

  • Yong Liu

    (Engineering College, Ocean University of China, Qingdao, 266100, China
    Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100, China)

  • Chengyan Gao

    (China Communications Planning and Design Institute for Water Transportation LTD, NO.28 Guozijian St., Beijing 100007, China)

  • Huan Zhang

    (Engineering College, Ocean University of China, Qingdao, 266100, China)

Abstract

Coastal seawater quality is of significance for the environment, ecology and fisheries. In recent years, the hypoxia or anoxia problems of bottom seawater aggravated due mainly to the seawater stratification and eutrophication. This paper addresses an innovative aeration device with a wave-driven heaving buoy to enhance the dissolved oxygen concentration for bottom water. A series of physical experiments was conducted to investigate its hydrodynamic performance and air flow rate. The response amplitude of heaving components and the average value of air flow rate were examined with the related parameters, including incident wave height, incident wave steepness and aeration depth. It was found that with increasing incident wave height, the average heaving displacement and the average air flow rate increase respectively. With the increase of incident wave steepness, the relative value of average heaving displacement increases obviously for high wave period scenarios, it increases slightly for small wave period scenarios in comparison and the relative value of air flow rate increases evidently. With the increase of aeration depth, the average heaving displacement and the average air flow rate decrease respectively. With the increase of relative aeration depth, the relative value of average heaving displacement and the relative value of air flow rate decrease respectively. In addition, the dimensional analysis and the least squares methods were used to obtain the prediction formulas for the average heaving displacement and the average air flow rate, and they agreed well with the related experimental data.

Suggested Citation

  • Zegao Yin & Yanxu Wang & Yong Liu & Chengyan Gao & Huan Zhang, 2018. "Laboratory Investigation on Hydrodynamic Performance of an Innovative Aeration Device with a Wave-Driven Heaving Buoy," Energies, MDPI, vol. 11(12), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3262-:d:185032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cong, Hai-Bing & Huang, Ting-Lin & Chai, Bei-Bei & Zhao, Jian-Wei, 2009. "A new mixing–oxygenating technology for water quality improvement of urban water source and its implication in a reservoir," Renewable Energy, Elsevier, vol. 34(9), pages 2054-2060.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akhmad Mustafa & Mudian Paena & Admi Athirah & Erna Ratnawati & Ruzkiah Asaf & Hidayat Suryanto Suwoyo & Sahabuddin Sahabuddin & Erfan Andi Hendrajat & Kamaruddin Kamaruddin & Early Septiningsih & And, 2022. "Temporal and Spatial Analysis of Coastal Water Quality to Support Application of Whiteleg Shrimp Litopenaeus vannamei Intensive Pond Technology," Sustainability, MDPI, vol. 14(5), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weixing Ma & Tinglin Huang & Xuan Li & Zizhen Zhou & Yang Li & Kang Zeng, 2015. "The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China," IJERPH, MDPI, vol. 12(7), pages 1-17, July.
    2. Jian-Chao Shi & Ting-Lin Huang & Gang Wen & Fei Liu & Xiao-Peng Qiu & Bao-Shan Wang, 2016. "The Variation Characteristic of Sulfides and VOSc in a Source Water Reservoir and Its Control Using a Water-Lifting Aerator," IJERPH, MDPI, vol. 13(4), pages 1-13, April.
    3. Sheng-Nan Chen & Pan-Lu Shang & Peng-Liang Kang & Man-Man Du, 2020. "Metabolic Functional Community Diversity of Associated Bacteria during the Degradation of Phytoplankton from a Drinking Water Reservoir," IJERPH, MDPI, vol. 17(5), pages 1-12, March.
    4. Chen Lan & Jingan Chen & Jingfu Wang & Jianyang Guo & Jia Yu & Pingping Yu & Haiquan Yang & Yong Liu, 2017. "Application of Circular Bubble Plume Diffusers to Restore Water Quality in a Sub-Deep Reservoir," IJERPH, MDPI, vol. 14(11), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3262-:d:185032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.