IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3140-d182509.html
   My bibliography  Save this article

Active and Reactive Power Compensation Control Strategy for VSC-HVDC Systems under Unbalanced Grid Conditions

Author

Listed:
  • Weiming Liu

    (State Grid East Inner Mongolia Electric Power Research Institute, Hohhot 010020, China)

  • Tingting Zheng

    (State Grid East Inner Mongolia Electric Power Research Institute, Hohhot 010020, China)

  • Ziwen Liu

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zhihua Fan

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yilong Kang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Da Wang

    (State Grid East Inner Mongolia Electric Power Research Institute, Hohhot 010020, China)

  • Mingming Zhang

    (State Grid East Inner Mongolia Electric Power Research Institute, Hohhot 010020, China)

  • Shihong Miao

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

This paper presents a power compensation strategy to suppress the double frequency power ripples of Voltage source converter high-voltage direct current (VSC-HVDC) systems under unbalanced grid voltage conditions. The mathematical control equations of the double frequency ripple power of VSC under unbalanced operating conditions are firstly derived and established, where the dynamic behaviors of the double frequency ripples in active and reactive power are regarded as being driven by current-relevant components and voltage-relevant components, respectively. Based on the equations, a power compensation control strategy of VSC-HVDC is proposed via the passivity-based control with disturbance observer to suppress both the current-relevant and voltage-relevant components in the power ripples. With this control strategy, the double frequency ripples in active and reactive power are suppressed simultaneously and system performance is significantly enhanced with the implementation of the disturbance observer in the passivity-based control. Theoretical stability analysis and simulation cases show the effectiveness and superiority of the proposed strategy.

Suggested Citation

  • Weiming Liu & Tingting Zheng & Ziwen Liu & Zhihua Fan & Yilong Kang & Da Wang & Mingming Zhang & Shihong Miao, 2018. "Active and Reactive Power Compensation Control Strategy for VSC-HVDC Systems under Unbalanced Grid Conditions," Energies, MDPI, vol. 11(11), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3140-:d:182509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weipeng Yang & Aimin Zhang & Jungang Li & Guoqi Li & Hang Zhang & Jianhua Wang, 2017. "Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Jiawei Huang & Honghua Wang & Chong Wang, 2017. "Passivity-Based Control of a Doubly Fed Induction Generator System under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 10(8), pages 1-13, August.
    3. Korompili, Asimenia & Wu, Qiuwei & Zhao, Haoran, 2016. "Review of VSC HVDC connection for offshore wind power integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1405-1414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Serrano & Javier Moriano & Mario Rizo & Francisco Javier Dongil, 2019. "Enhanced Current Reference Calculation to Avoid Harmonic Active Power Oscillations," Energies, MDPI, vol. 12(21), pages 1-21, October.
    2. Pedro Roncero-Sánchez & Alfonso Parreño Torres & Javier Vázquez & Francisco Javier López-Alcolea & Emilio J. Molina-Martínez & Felix Garcia-Torres, 2021. "Multiterminal HVDC System with Power Quality Enhancement," Energies, MDPI, vol. 14(5), pages 1-22, February.
    3. Jibran Ali & Stefano Massucco & Federico Silvestro, 2019. "Aggregation Strategy for Reactive Power Compensation Techniques—Validation," Energies, MDPI, vol. 12(11), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    2. Liuming Jing & Dae-Hee Son & Sang-Hee Kang & Soon-Ryul Nam, 2017. "Unsynchronized Phasor-Based Protection Method for Single Line-to-Ground Faults in an Ungrounded Offshore Wind Farm with Fully-Rated Converters-Based Wind Turbines," Energies, MDPI, vol. 10(4), pages 1-15, April.
    3. Nansheng Pang & Wenjing Guo, 2019. "Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    4. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    5. Sadik Kucuksari & Nuh Erdogan & Umit Cali, 2019. "Impact of Electrical Topology, Capacity Factor and Line Length on Economic Performance of Offshore Wind Investments," Energies, MDPI, vol. 12(16), pages 1-21, August.
    6. Shangen Tian & David Campos-Gaona & Vinícius A. Lacerda & Raymundo E. Torres-Olguin & Olimpo Anaya-Lara, 2020. "Novel Control Approach for a Hybrid Grid-Forming HVDC Offshore Transmission System," Energies, MDPI, vol. 13(7), pages 1-14, April.
    7. Weipeng Yang & Hang Zhang & Jungang Li & Aimin Zhang & Yunhong Zhou & Jianhua Wang, 2018. "PIDR Sliding Mode Current Control with Online Inductance Estimator for VSC-MVDC System Converter Stations under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 11(10), pages 1-20, September.
    8. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. José M. Maza-Ortega & Juan M. Mauricio & Manuel Barragán-Villarejo & Charis Demoulias & Antonio Gómez-Expósito, 2019. "Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks," Energies, MDPI, vol. 12(19), pages 1-22, September.
    10. Zhang, Jun & Du, Xiong & Qian, Cheng, 2021. "Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management," Applied Energy, Elsevier, vol. 286(C).
    11. Umar Javed & Neelam Mughees & Muhammad Jawad & Omar Azeem & Ghulam Abbas & Nasim Ullah & Md. Shahariar Chowdhury & Kuaanan Techato & Khurram Shabih Zaidi & Umair Tahir, 2021. "A Systematic Review of Key Challenges in Hybrid HVAC–HVDC Grids," Energies, MDPI, vol. 14(17), pages 1-27, September.
    12. Li, Jia & Liu, Feng & Li, Zuyi & Shao, Chengcheng & Liu, Xinyuan, 2018. "Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 272-284.
    13. Neville R. Watson & Jeremy D. Watson, 2020. "An Overview of HVDC Technology," Energies, MDPI, vol. 13(17), pages 1-35, August.
    14. Velazquez-Ibañez, Alfredo & Rodríguez-Rodríguez, Juan R. & Arrieta-Paternina, Mario R. & Segundo-Sevilla, Felix R. & Korba, Petr, 2024. "Definition of safe operating limits for dq control-based Voltage Source Converters under unbalanced grid voltages," Applied Energy, Elsevier, vol. 367(C).
    15. Li, Yang & Li, Yahui & Li, Guoqing & Zhao, Dongbo & Chen, Chen, 2018. "Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process," Energy, Elsevier, vol. 147(C), pages 286-296.
    16. Morris Brenna & Federica Foiadelli & Michela Longo & Dario Zaninelli, 2017. "Improvement of Wind Energy Production through HVDC Systems," Energies, MDPI, vol. 10(2), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3140-:d:182509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.