IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2930-d178635.html
   My bibliography  Save this article

Hierarchical Control of Nonlinear Active Four-Wheel-Steering Vehicles

Author

Listed:
  • Jie Tian

    (College of Automobile & Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Jie Ding

    (College of Automobile & Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Yongpeng Tai

    (College of Automobile & Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Ning Chen

    (College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China)

Abstract

A new type of hierarchical control is proposed for a four-wheel-steering (4WS) vehicle, in which both the sideslip angle and yaw rate feedback are used, and the saturation of the control variables (i.e., the front and rear steering angles) is considered. The nonlinear three degrees of freedom (3DOF) 4WS vehicle model is employed to describe the uncertainties originating from the operating situations. Further, a normal front-wheel-steering (2WS) vehicle with a drop filter of the sideslip angle is selected as the reference model. The inputs for the rear and front steering angles of the linear 2DOF 4WS, required to achieve the performances described by the reference model, are obtained and controlled by the upper controller. Further, the lower controller is designed to eliminate the state error between the linear 2DOF and nonlinear 3DOF 4WS vehicle models. The simulation results of several vehicle models with/without the controller are presented, and the robustness of the hierarchical control system is analyzed. The simulation results indicate that using the proposed hierarchical controller yields the same performance between the nonlinear 4WS vehicle and the reference model, in addition to exhibiting good robustness.

Suggested Citation

  • Jie Tian & Jie Ding & Yongpeng Tai & Ning Chen, 2018. "Hierarchical Control of Nonlinear Active Four-Wheel-Steering Vehicles," Energies, MDPI, vol. 11(11), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2930-:d:178635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chuanyang Sun & Xin Zhang & Lihe Xi & Ying Tian, 2018. "Design of a Path-Tracking Steering Controller for Autonomous Vehicles," Energies, MDPI, vol. 11(6), pages 1-17, June.
    2. Huang, Dong-Wei & Wang, Hong-Li & Zhu, Zhi-Wen & Feng-Zhang,, 2007. "Stochastic stability of four-wheel-steering system," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 823-828.
    3. Mingxing Li & Yingmin Jia, 2016. "Precompensation decoupling control with performance for 4WS velocity-varying vehicles," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(16), pages 3864-3875, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zepeng Gao & Jianbo Feng & Chao Wang & Yu Cao & Bonan Qin & Tao Zhang & Senqi Tan & Riya Zeng & Hongbin Ren & Tongxin Ma & Youshan Hou & Jie Xiao, 2022. "Research on Vehicle Active Steering Stability Control Based on Variable Time Domain Input and State Information Prediction," Sustainability, MDPI, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Abdallaoui & El-Hassane Aglzim & Ahmed Chaibet & Ali Kribèche, 2022. "Thorough Review Analysis of Safe Control of Autonomous Vehicles: Path Planning and Navigation Techniques," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    3. Leon Prochowski & Mateusz Ziubiński & Patryk Szwajkowski & Mirosław Gidlewski & Tomasz Pusty & Tomasz Lech Stańczyk, 2021. "Impact of Control System Model Parameters on the Obstacle Avoidance by an Autonomous Car-Trailer Unit: Research Results," Energies, MDPI, vol. 14(10), pages 1-31, May.
    4. Francesco Calise & Mário Costa & Qiuwang Wang & Xiliang Zhang & Neven Duić, 2018. "Recent Advances in the Analysis of Sustainable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-30, September.
    5. Jie Tian & Jun Tong & Shi Luo, 2018. "Differential Steering Control of Four-Wheel Independent-Drive Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2930-:d:178635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.