IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2708-d174878.html
   My bibliography  Save this article

A Novel Global Maximum Power Point Tracking Strategy Based on Modified Flower Pollination Algorithm for Photovoltaic Systems under Non-Uniform Irradiation and Temperature Conditions

Author

Listed:
  • Tingting Pei

    (College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Xiaohong Hao

    (College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Qun Gu

    (College of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China)

Abstract

Due to the influence of mutative environmental conditions, the photovoltaic (PV) array of a PV system receives with non-uniform irradiation and temperature, which leads to the power-voltage (P-V) output characteristic appearing multi-peak and the current-voltage (I-V) output characteristic emerging multi-steps. With the assistance of various optimization algorithms, maximum power point tracking (MPPT) technologies have become an effective method to improve the conversion efficiency of the PV system under different weather conditions. However, the recognition ability of these algorithms for global peak are still not guaranteed under uneven irradiation and temperature, which have attributed to absence randomness for these algorithms after reaching the maximum power point (MPP) region. Therefore, a modified flower pollination algorithm (MFPA) is proposed in this paper for MPPT. In MFPA, switching between dual-mode optimization is affected by both switch probability and population fitness values, and therefore overcomes the defects that the flower pollination algorithm (FPA) falls easily into the local maximum and slowly convergences in the later period. The performance of MFPA for MPPT is verified by comparing with the perturb & observe method and FPA. Simulation experiment results show that the proposed algorithm can rapidly and accurately track the MPP under various environmental conditions, especially the performance being superior under the condition of strong irradiation and partial shading.

Suggested Citation

  • Tingting Pei & Xiaohong Hao & Qun Gu, 2018. "A Novel Global Maximum Power Point Tracking Strategy Based on Modified Flower Pollination Algorithm for Photovoltaic Systems under Non-Uniform Irradiation and Temperature Conditions," Energies, MDPI, vol. 11(10), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2708-:d:174878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    2. Ishaque, Kashif & Salam, Zainal, 2013. "A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 475-488.
    3. Jian Zhao & Xuesong Zhou & Youjie Ma & Yiqi Liu, 2017. "Analysis of Dynamic Characteristic for Solar Arrays in Series and Global Maximum Power Point Tracking Based on Optimal Initial Value Incremental Conductance Strategy under Partially Shaded Conditions," Energies, MDPI, vol. 10(1), pages 1-23, January.
    4. Gounden, N. Ammasai & Ann Peter, Sabitha & Nallandula, Himaja & Krithiga, S., 2009. "Fuzzy logic controller with MPPT using line-commutated inverter for three-phase grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 34(3), pages 909-915.
    5. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao & Ji, Jie, 2018. "Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 840-873.
    6. Altas, I.H. & Sharaf, A.M., 2008. "A novel maximum power fuzzy logic controller for photovoltaic solar energy systems," Renewable Energy, Elsevier, vol. 33(3), pages 388-399.
    7. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    8. Slimane Hadji & Jean-Paul Gaubert & Fateh Krim, 2018. "Real-Time Genetic Algorithms-Based MPPT: Study and Comparison (Theoretical an Experimental) with Conventional Methods," Energies, MDPI, vol. 11(2), pages 1-17, February.
    9. Sundareswaran, K. & Vignesh kumar, V. & Palani, S., 2015. "Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions," Renewable Energy, Elsevier, vol. 75(C), pages 308-317.
    10. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    11. Prasanth Ram, J. & Rajasekar, N., 2017. "A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC)," Energy, Elsevier, vol. 118(C), pages 512-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aqiang Zhao & Weimin Wu & Zuoyao Sun & Lixun Zhu & Kaiyuan Lu & Henry Chung & Frede Blaabjerg, 2019. "A Flower Pollination Method Based Global Maximum Power Point Tracking Strategy for Point-Absorbing Type Wave Energy Converters," Energies, MDPI, vol. 12(7), pages 1-19, April.
    2. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    3. Nguyen Van Tan & Nguyen Binh Nam & Nguyen Huu Hieu & Le Kim Hung & Minh Quan Duong & Le Hong Lam, 2020. "A Proposal for an MPPT Algorithm Based on the Fluctuations of the PV Output Power, Output Voltage, and Control Duty Cycle for Improving the Performance of PV Systems in Microgrid," Energies, MDPI, vol. 13(17), pages 1-21, August.
    4. Ming-Fa Tsai & Chung-Shi Tseng & Kuo-Tung Hung & Shih-Hua Lin, 2021. "A Novel DSP-Based MPPT Control Design for Photovoltaic Systems Using Neural Network Compensator," Energies, MDPI, vol. 14(11), pages 1-20, June.
    5. Muhammad Annas Hafeez & Ahmer Naeem & Muhammad Akram & Muhammad Yaqoob Javed & Aamer Bilal Asghar & Yong Wang, 2022. "A Novel Hybrid MPPT Technique Based on Harris Hawk Optimization (HHO) and Perturb and Observer (P&O) under Partial and Complex Partial Shading Conditions," Energies, MDPI, vol. 15(15), pages 1-18, July.
    6. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    7. Sajid Sarwar & Muhammad Yaqoob Javed & Mujtaba Hussain Jaffery & Muhammad Saqib Ashraf & Muhammad Talha Naveed & Muhammad Annas Hafeez, 2022. "Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions," Energies, MDPI, vol. 15(13), pages 1-39, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Jordehi, A. Rezaee, 2016. "Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1127-1138.
    3. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    4. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    5. Ahmed, Jubaer & Salam, Zainal, 2015. "A critical evaluation on maximum power point tracking methods for partial shading in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 933-953.
    6. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    7. Mehedi, I.M. & Salam, Z. & Ramli, M.Z. & Chin, V.J. & Bassi, H. & Rawa, M.J.H. & Abdullah, M.P., 2021. "Critical evaluation and review of partial shading mitigation methods for grid-connected PV system using hardware solutions: The module-level and array-level approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    9. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    10. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    11. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    12. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    13. Zahra Bel Hadj Salah & Saber Krim & Mohamed Ali Hajjaji & Badr M. Alshammari & Khalid Alqunun & Ahmed Alzamil & Tawfik Guesmi, 2023. "A New Efficient Cuckoo Search MPPT Algorithm Based on a Super-Twisting Sliding Mode Controller for Partially Shaded Standalone Photovoltaic System," Sustainability, MDPI, vol. 15(12), pages 1-38, June.
    14. Prasanth Ram, J. & Rajasekar, N., 2017. "A new robust, mutated and fast tracking LPSO method for solar PV maximum power point tracking under partial shaded conditions," Applied Energy, Elsevier, vol. 201(C), pages 45-59.
    15. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    16. Muhammed Y. Worku & Mohamed A. Hassan & Luqman S. Maraaba & Md Shafiullah & Mohamed R. Elkadeem & Md Ismail Hossain & Mohamed A. Abido, 2023. "A Comprehensive Review of Recent Maximum Power Point Tracking Techniques for Photovoltaic Systems under Partial Shading," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    17. Tamir Shaqarin, 2023. "Particle Swarm Optimization with Targeted Position-Mutated Elitism (PSO-TPME) for Partially Shaded PV Systems," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    18. Amjad Ali & Kashif Irshad & Mohammad Farhan Khan & Md Moinul Hossain & Ibrahim N. A. Al-Duais & Muhammad Zeeshan Malik, 2021. "Artificial Intelligence and Bio-Inspired Soft Computing-Based Maximum Power Plant Tracking for a Solar Photovoltaic System under Non-Uniform Solar Irradiance Shading Conditions—A Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    19. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.
    20. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2708-:d:174878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.