IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1425-d112271.html
   My bibliography  Save this article

Optimal Scheduling Strategy for Domestic Electric Water Heaters Based on the Temperature State Priority List

Author

Listed:
  • Zhaojing Yin

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Yanbo Che

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Dezhi Li

    (China Electric Power Research Institute, Beijing 100192, China)

  • Huanan Liu

    (Department of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Dongmin Yu

    (Department of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

Abstract

With the rapid growth of thermostatically controlled loads, active power fluctuation and peak demand growth within an autonomous micro-grid become serious problems. This paper tries to suppress power fluctuation and shave peak demand for a micro-grid through optimizing domestic electric water heaters (controllable load). In this paper, domestic electric water heater models are first built to optimize power flow within a single water heater. Subsequently, the Monte Carlo method is proposed to simulate power consumption of a cluster of domestic electric water heaters. After that, the temperature state priority list method is presented to suppress power flow and shave peak demand for a given micro-grid. Optimization results show that the proposed temperature state priority list method can reduce peak demand by 12.5%. However, it has a wider active power fluctuation range and needs a longer reaction time compared with the simplified temperature state priority list method. In addition, the optimization results show that by increasing the number of controllable loads participating in load scheduling, active power fluctuation can be reduced and the maximum active power of the given micro-grid can be cut. However, to achieve this, about 1.2% of extra electrical energy needs to be generated by the external grid.

Suggested Citation

  • Zhaojing Yin & Yanbo Che & Dezhi Li & Huanan Liu & Dongmin Yu, 2017. "Optimal Scheduling Strategy for Domestic Electric Water Heaters Based on the Temperature State Priority List," Energies, MDPI, vol. 10(9), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1425-:d:112271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yebai Qi & Dan Wang & Xuyang Wang & Hongjie Jia & Tianjiao Pu & Naishi Chen & Kaixin Liu, 2017. "Frequency Control Ancillary Service Provided by Efficient Power Plants Integrated in Queuing-Controlled Domestic Water Heaters," Energies, MDPI, vol. 10(4), pages 1-21, April.
    2. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2012. "Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems," Applied Energy, Elsevier, vol. 96(C), pages 104-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nkateko E. Mabunda & Meera K. Joseph, 2019. "Microcontroller-Based Strategies for the Incorporation of Solar to Domestic Electricity," Energies, MDPI, vol. 12(14), pages 1-21, July.
    2. Irene Muñoz-Benavente & Anca D. Hansen & Emilio Gómez-Lázaro & Tania García-Sánchez & Ana Fernández-Guillamón & Ángel Molina-García, 2019. "Impact of Combined Demand-Response and Wind Power Plant Participation in Frequency Control for Multi-Area Power Systems," Energies, MDPI, vol. 12(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elif Ustundag Soykan & Mustafa Bagriyanik, 2020. "The Effect of SMiShing Attack on Security of Demand Response Programs," Energies, MDPI, vol. 13(17), pages 1-17, September.
    2. Liu, Zhe & Wang, Dan & Jia, Hongjie & Djilali, Ned, 2014. "Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 136(C), pages 662-670.
    3. Yebai Qi & Dan Wang & Yu Lan & Hongjie Jia & Chengshan Wang & Kaixin Liu & Qing’e Hu & Menghua Fan, 2017. "A Two-Level Optimal Scheduling Strategy for Central Air-Conditioners Based on Metal Model with Comprehensive State-Queueing Control Models," Energies, MDPI, vol. 10(12), pages 1-21, December.
    4. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    5. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    6. Yao Yao & Peichao Zhang & Sijie Chen, 2019. "Aggregating Large-Scale Generalized Energy Storages to Participate in the Energy and Regulation Market," Energies, MDPI, vol. 12(6), pages 1-22, March.
    7. Huang, Renfang & Zhang, Zhen & Zhang, Wei & Mou, Jiegang & Zhou, Peijian & Wang, Yiwei, 2020. "Energy performance prediction of the centrifugal pumps by using a hybrid neural network," Energy, Elsevier, vol. 213(C).
    8. De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
    9. Georges, Emeline & Cornélusse, Bertrand & Ernst, Damien & Lemort, Vincent & Mathieu, Sébastien, 2017. "Residential heat pump as flexible load for direct control service with parametrized duration and rebound effect," Applied Energy, Elsevier, vol. 187(C), pages 140-153.
    10. Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
    11. Wei, Zhinong & Chen, Sheng & Sun, Guoqiang & Wang, Dan & Sun, Yonghui & Zang, Haixiang, 2016. "Probabilistic available transfer capability calculation considering static security constraints and uncertainties of electricity–gas integrated energy systems," Applied Energy, Elsevier, vol. 167(C), pages 305-316.
    12. Zhuang, Chaoqun & Choudhary, Ruchi & Mavrogianni, Anna, 2023. "Uncertainty-based optimal energy retrofit methodology for building heat electrification with enhanced energy flexibility and climate adaptability," Applied Energy, Elsevier, vol. 341(C).
    13. Yebai Qi & Dan Wang & Xuyang Wang & Hongjie Jia & Tianjiao Pu & Naishi Chen & Kaixin Liu, 2017. "Frequency Control Ancillary Service Provided by Efficient Power Plants Integrated in Queuing-Controlled Domestic Water Heaters," Energies, MDPI, vol. 10(4), pages 1-21, April.
    14. Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2014. "Probabilistic modeling and assessment of the impact of electric heat pumps on low voltage distribution networks," Applied Energy, Elsevier, vol. 127(C), pages 249-266.
    15. Huang, Tian-en & Guo, Qinglai & Sun, Hongbin & Tan, Chin-Woo & Hu, Tianyu, 2019. "A deep spatial-temporal data-driven approach considering microclimates for power system security assessment," Applied Energy, Elsevier, vol. 237(C), pages 36-48.
    16. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2013. "Hierarchical market integration of responsive loads as spinning reserve," Applied Energy, Elsevier, vol. 104(C), pages 229-238.
    17. Xue, Xue & Wang, Shengwei & Sun, Yongjun & Xiao, Fu, 2014. "An interactive building power demand management strategy for facilitating smart grid optimization," Applied Energy, Elsevier, vol. 116(C), pages 297-310.
    18. Broeer, Torsten & Fuller, Jason & Tuffner, Francis & Chassin, David & Djilali, Ned, 2014. "Modeling framework and validation of a smart grid and demand response system for wind power integration," Applied Energy, Elsevier, vol. 113(C), pages 199-207.
    19. Alimohammadisagvand, Behrang & Jokisalo, Juha & Sirén, Kai, 2018. "Comparison of four rule-based demand response control algorithms in an electrically and heat pump-heated residential building," Applied Energy, Elsevier, vol. 209(C), pages 167-179.
    20. Muhammad Saeed Uz Zaman & Syed Basit Ali Bukhari & Khalid Mousa Hazazi & Zunaib Maqsood Haider & Raza Haider & Chul-Hwan Kim, 2018. "Frequency Response Analysis of a Single-Area Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia," Energies, MDPI, vol. 11(4), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1425-:d:112271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.