IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4542-d407618.html
   My bibliography  Save this article

The Effect of SMiShing Attack on Security of Demand Response Programs

Author

Listed:
  • Elif Ustundag Soykan

    (Ericsson Research, Istanbul 34467, Turkey)

  • Mustafa Bagriyanik

    (Department of Electrical Engineering, Istanbul Technical University, Istanbul 34467, Turkey)

Abstract

Demand response (DR) is a vital element for a reliable and sustainable power grid. Consumer behavior is a key factor in the success of DR programs. In this study, we focus on how consumer reaction to Short Messaging Service (SMS) messages can disturb the demand response. We present a new type of threat to DR programs using SMS phishing attacks. We follow a holistic approach starting from a risk assessment focusing on DR programs’ notification message security following the Smart Grid Information Security (SGIS) risk methodology. We identify threats, conduct impact analysis, and estimate the likelihood of the attacks for various attacker types and motivations. We implemented deterministic and randomized attack scenarios to demonstrate the success of the attack using a state-of-the-art simulator on the IEEE European Low Voltage Feeder Test System. Simulations show that the attack results in local outages, which may lead to large-scale blackouts with the cascading effect on the power system. We conclude that this is a new type of threat that has been overlooked, and it deserves more attention as mobile devices will continually be part of our lives.

Suggested Citation

  • Elif Ustundag Soykan & Mustafa Bagriyanik, 2020. "The Effect of SMiShing Attack on Security of Demand Response Programs," Energies, MDPI, vol. 13(17), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4542-:d:407618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seong-Kyu Kim & Ung-Mo Kim & Jun-Ho Huh, 2019. "A Study on Improvement of Blockchain Application to Overcome Vulnerability of IoT Multiplatform Security," Energies, MDPI, vol. 12(3), pages 1-29, January.
    2. Jae Woong Joo & Seo Yeon Moon & Saurabh Singh & Jong Hyuk Park, 2017. "S-Detector: an enhanced security model for detecting Smishing attack for mobile computing," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 66(1), pages 29-38, September.
    3. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2012. "Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems," Applied Energy, Elsevier, vol. 96(C), pages 104-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taha Selim Ustun, 2022. "Cybersecurity in Smart Grids," Energies, MDPI, vol. 15(15), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhe & Wang, Dan & Jia, Hongjie & Djilali, Ned, 2014. "Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 136(C), pages 662-670.
    2. Yebai Qi & Dan Wang & Yu Lan & Hongjie Jia & Chengshan Wang & Kaixin Liu & Qing’e Hu & Menghua Fan, 2017. "A Two-Level Optimal Scheduling Strategy for Central Air-Conditioners Based on Metal Model with Comprehensive State-Queueing Control Models," Energies, MDPI, vol. 10(12), pages 1-21, December.
    3. Zhaojing Yin & Yanbo Che & Dezhi Li & Huanan Liu & Dongmin Yu, 2017. "Optimal Scheduling Strategy for Domestic Electric Water Heaters Based on the Temperature State Priority List," Energies, MDPI, vol. 10(9), pages 1-15, September.
    4. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    5. Huang, Renfang & Zhang, Zhen & Zhang, Wei & Mou, Jiegang & Zhou, Peijian & Wang, Yiwei, 2020. "Energy performance prediction of the centrifugal pumps by using a hybrid neural network," Energy, Elsevier, vol. 213(C).
    6. Emilio Abad-Segura & Alfonso Infante-Moro & Mariana-Daniela González-Zamar & Eloy López-Meneses, 2021. "Blockchain Technology for Secure Accounting Management: Research Trends Analysis," Mathematics, MDPI, vol. 9(14), pages 1-26, July.
    7. De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
    8. Georges, Emeline & Cornélusse, Bertrand & Ernst, Damien & Lemort, Vincent & Mathieu, Sébastien, 2017. "Residential heat pump as flexible load for direct control service with parametrized duration and rebound effect," Applied Energy, Elsevier, vol. 187(C), pages 140-153.
    9. Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
    10. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    11. Abdallah Ghourabi & Mahmood A. Mahmood & Qusay M. Alzubi, 2020. "A Hybrid CNN-LSTM Model for SMS Spam Detection in Arabic and English Messages," Future Internet, MDPI, vol. 12(9), pages 1-16, September.
    12. Wei, Zhinong & Chen, Sheng & Sun, Guoqiang & Wang, Dan & Sun, Yonghui & Zang, Haixiang, 2016. "Probabilistic available transfer capability calculation considering static security constraints and uncertainties of electricity–gas integrated energy systems," Applied Energy, Elsevier, vol. 167(C), pages 305-316.
    13. Zhuang, Chaoqun & Choudhary, Ruchi & Mavrogianni, Anna, 2023. "Uncertainty-based optimal energy retrofit methodology for building heat electrification with enhanced energy flexibility and climate adaptability," Applied Energy, Elsevier, vol. 341(C).
    14. Yebai Qi & Dan Wang & Xuyang Wang & Hongjie Jia & Tianjiao Pu & Naishi Chen & Kaixin Liu, 2017. "Frequency Control Ancillary Service Provided by Efficient Power Plants Integrated in Queuing-Controlled Domestic Water Heaters," Energies, MDPI, vol. 10(4), pages 1-21, April.
    15. Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2014. "Probabilistic modeling and assessment of the impact of electric heat pumps on low voltage distribution networks," Applied Energy, Elsevier, vol. 127(C), pages 249-266.
    16. Huang, Tian-en & Guo, Qinglai & Sun, Hongbin & Tan, Chin-Woo & Hu, Tianyu, 2019. "A deep spatial-temporal data-driven approach considering microclimates for power system security assessment," Applied Energy, Elsevier, vol. 237(C), pages 36-48.
    17. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2013. "Hierarchical market integration of responsive loads as spinning reserve," Applied Energy, Elsevier, vol. 104(C), pages 229-238.
    18. Changping Zhao & Juanjuan Sun & Yu Gong & Zhi Li & Peter Zhou, 2022. "Research on the Blue Carbon Trading Market System under Blockchain Technology," Energies, MDPI, vol. 15(9), pages 1-17, April.
    19. Xue, Xue & Wang, Shengwei & Sun, Yongjun & Xiao, Fu, 2014. "An interactive building power demand management strategy for facilitating smart grid optimization," Applied Energy, Elsevier, vol. 116(C), pages 297-310.
    20. Broeer, Torsten & Fuller, Jason & Tuffner, Francis & Chassin, David & Djilali, Ned, 2014. "Modeling framework and validation of a smart grid and demand response system for wind power integration," Applied Energy, Elsevier, vol. 113(C), pages 199-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4542-:d:407618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.