IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1106-d106315.html
   My bibliography  Save this article

Design, Implementation and Demonstration of Embedded Agents for Energy Management in Non-Residential Buildings

Author

Listed:
  • Ana Constantin

    (Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Aachen 52074,Germany)

  • Artur Löwen

    (Institute for Automation of Complex Power Systems, RWTH Aachen University, Aachen 52074, Germany
    Current address: Gridhound UG, Aachen 52068, Germany.)

  • Ferdinanda Ponci

    (Institute for Automation of Complex Power Systems, RWTH Aachen University, Aachen 52074, Germany)

  • Dirk Müller

    (Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Aachen 52074,Germany)

  • Antonello Monti

    (Institute for Automation of Complex Power Systems, RWTH Aachen University, Aachen 52074, Germany)

Abstract

With the building sector being responsible for 30% of the total final energy consumption, great interest lies in implementing adequate policies and deploying efficient technologies that would decrease this number. However, building comfort and energy management systems (BCEM) are challenging to manage on account of their increasing complexity with regard to the integration of renewable energy sources or the connection of electrical, thermal and gas grids. Multi-agent~systems (MAS) deal well with such complex issues. This paper presents an MAS for non-residential buildings from the design, implementation and demonstration, both simulation based and in a field test. Starting from an ontology and an attached data model for BCEM application, we elaborated use cases for developing and testing the MAS framework. The building and technical equipment are modeled using the modeling language Modelica under Dymola. The agents are programmed in JADE and communicate with Dymola via TCP/IP and with the real devices via BACnet. Operatively, the~agents can take on different control strategies: normal operation with no optimization, optimization of energy costs, where energy is delivered through the room through the devices that have the lowest operating costs, and relaxation of the comfort constraint, where the costs of the productivity loss under sub-optimal comfort conditions is taken into account during optimization. Comfort is expressed as a function of indoor air temperature. Simulation, including a comparison with a benchmark system, and field test results are presented to demonstrate the features of the proposed BCEM.

Suggested Citation

  • Ana Constantin & Artur Löwen & Ferdinanda Ponci & Dirk Müller & Antonello Monti, 2017. "Design, Implementation and Demonstration of Embedded Agents for Energy Management in Non-Residential Buildings," Energies, MDPI, vol. 10(8), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1106-:d:106315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Labeodan, Timilehin & Aduda, Kennedy & Boxem, Gert & Zeiler, Wim, 2015. "On the application of multi-agent systems in buildings for improved building operations, performance and smart grid interaction – A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1405-1414.
    2. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Santos & Tiago Pinto & Zita Vale & Rui Carvalho & Brígida Teixeira & Carlos Ramos, 2021. "Upgrading BRICKS—The Context-Aware Semantic Rule-Based System for Intelligent Building Energy and Security Management," Energies, MDPI, vol. 14(15), pages 1-14, July.
    2. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Zbigniew Nadolny, 2022. "Determination of Dielectric Losses in a Power Transformer," Energies, MDPI, vol. 15(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmidt, Mischa & Åhlund, Christer, 2018. "Smart buildings as Cyber-Physical Systems: Data-driven predictive control strategies for energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 742-756.
    2. Dong, Bing & Li, Zhaoxuan & Taha, Ahmad & Gatsis, Nikolaos, 2018. "Occupancy-based buildings-to-grid integration framework for smart and connected communities," Applied Energy, Elsevier, vol. 219(C), pages 123-137.
    3. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    4. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    5. Marzullo, Thibault & Keane, Marcus M. & Geron, Marco & Monaghan, Rory F.D., 2019. "A computational toolchain for the automatic generation of multiple Reduced-Order Models from CFD simulations," Energy, Elsevier, vol. 180(C), pages 511-519.
    6. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    7. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    8. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    9. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    10. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    11. Andrew Izawa & Matthias Fripp, 2018. "Multi-Objective Control of Air Conditioning Improves Cost, Comfort and System Energy Balance," Energies, MDPI, vol. 11(9), pages 1-18, September.
    12. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    13. James Allen & Ari Halberstadt & John Powers & Nael H. El-Farra, 2020. "An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management," Mathematics, MDPI, vol. 8(8), pages 1-28, July.
    14. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    15. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2021. "Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control," Applied Energy, Elsevier, vol. 288(C).
    16. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    17. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    18. Schellenberg, C. & Lohan, J. & Dimache, L., 2020. "Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Barber, Kyle A. & Krarti, Moncef, 2022. "A review of optimization based tools for design and control of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1106-:d:106315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.