IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1096-d105946.html
   My bibliography  Save this article

Real-Time Distributed Economic Model Predictive Control for Complete Vehicle Energy Management

Author

Listed:
  • Constantijn Romijn

    (Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
    All authors contributed equally to this work.)

  • Tijs Donkers

    (Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
    All authors contributed equally to this work.)

  • John Kessels

    (DAF Trucks NV, Vehicle Control Group, 5643 TW Eindhoven, The Netherlands
    All authors contributed equally to this work.)

  • Siep Weiland

    (Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
    All authors contributed equally to this work.)

Abstract

In this paper, a real-time distributed economic model predictive control approach for complete vehicle energy management (CVEM) is presented using a receding control horizon in combination with a dual decomposition. The dual decomposition allows the CVEM optimization problem to be solved by solving several smaller optimization problems. The receding horizon control problem is formulated with variable sample intervals, allowing for large prediction horizons with only a limited number of decision variables and constraints in the optimization problem. Furthermore, a novel on/off control concept for the control of the refrigerated semi-trailer, the air supply system and the climate control system is introduced. Simulation results on a low-fidelity vehicle model show that close to optimal fuel reduction performance can be achieved. The fuel reduction for the on/off controlled subsystems strongly depends on the number of switches allowed. By allowing up to 15-times more switches, a fuel reduction of 1.3% can be achieved. The approach is also validated on a high-fidelity vehicle model, for which the road slope is predicted by an e-horizon sensor, leading to a prediction of the propulsion power and engine speed. The prediction algorithm is demonstrated with measured ADASIS information on a public road around Eindhoven, which shows that accurate prediction of the propulsion power and engine speed is feasible when the vehicle follows the most probable path. A fuel reduction of up to 0.63% is achieved for the high-fidelity vehicle model.

Suggested Citation

  • Constantijn Romijn & Tijs Donkers & John Kessels & Siep Weiland, 2017. "Real-Time Distributed Economic Model Predictive Control for Complete Vehicle Energy Management," Energies, MDPI, vol. 10(8), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1096-:d:105946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pérez, Laura V. & Bossio, Guillermo R. & Moitre, Diego & García, Guillermo O., 2006. "Optimization of power management in an hybrid electric vehicle using dynamic programming," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(1), pages 244-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludmiła Filina-Dawidowicz & Csaba Csiszár, 2022. "Influence of Parking Sheds on Energy Efficiency of Road Refrigerated Transport," Energies, MDPI, vol. 15(5), pages 1-18, March.
    2. Jinhong Sun & Xiangdang Xue & Ka Wai Eric Cheng, 2019. "Fuzzy Sliding Mode Wheel Slip Ratio Control for Smart Vehicle Anti-Lock Braking System," Energies, MDPI, vol. 12(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bảo-Huy Nguyễn & João Pedro F. Trovão & Ronan German & Alain Bouscayrol, 2020. "Real-Time Energy Management of Parallel Hybrid Electric Vehicles Using Linear Quadratic Regulation," Energies, MDPI, vol. 13(21), pages 1-19, October.
    2. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    3. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    4. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    5. Bedatri Moulik & Dirk Söffker, 2015. "Optimal Rule-Based Power Management for Online, Real-Time Applications in HEVs with Multiple Sources and Objectives: A Review," Energies, MDPI, vol. 8(9), pages 1-15, August.
    6. Xiaoyuan Wang & Haiying Lv & Qiang Sun & Yanqing Mi & Peng Gao, 2017. "A Proportional Resonant Control Strategy for Efficiency Improvement in Extended Range Electric Vehicles," Energies, MDPI, vol. 10(2), pages 1-16, February.
    7. Pozna, Claudiu & Troester, Fritz & Precup, Radu-Emil & Tar, József K. & Preitl, Stefan, 2009. "On the design of an obstacle avoiding trajectory: Method and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2211-2226.
    8. Enang, Wisdom & Bannister, Chris, 2017. "Modelling and control of hybrid electric vehicles (A comprehensive review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1210-1239.
    9. Sun, Chao & Sun, Fengchun & He, Hongwen, 2017. "Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1644-1653.
    10. Zhang, Shuo & Xiong, Rui & Sun, Fengchun, 2017. "Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system," Applied Energy, Elsevier, vol. 185(P2), pages 1654-1662.
    11. Tobias Nüesch & Philipp Elbert & Michael Flankl & Christopher Onder & Lino Guzzella, 2014. "Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs," Energies, MDPI, vol. 7(2), pages 1-23, February.
    12. Chaoying Xia & Cong Zhang, 2015. "Power Management Strategy of Hybrid Electric Vehicles Based on Quadratic Performance Index," Energies, MDPI, vol. 8(11), pages 1-16, November.
    13. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    14. Tian, Xiang & Cai, Yingfeng & Sun, Xiaodong & Zhu, Zhen & Xu, Yiqiang, 2019. "An adaptive ECMS with driving style recognition for energy optimization of parallel hybrid electric buses," Energy, Elsevier, vol. 189(C).
    15. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Xiang, Changle & Li, Xunming, 2022. "Real-time energy-saving control for HEVs in car-following scenario with a double explicit MPC approach," Energy, Elsevier, vol. 247(C).
    16. Du, Yongchang & Zhao, Yue & Wang, Qinpu & Zhang, Yuanbo & Xia, Huaicheng, 2016. "Trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus," Energy, Elsevier, vol. 115(P1), pages 1259-1271.
    17. Wang, Hanchen & Ye, Yiming & Zhang, Jiangfeng & Xu, Bin, 2023. "A comparative study of 13 deep reinforcement learning based energy management methods for a hybrid electric vehicle," Energy, Elsevier, vol. 266(C).
    18. Bao, Shuyue & Sun, Ping & Zhu, Jianxin & Ji, Qian & Liu, Junheng, 2022. "Improved multi-dimensional dynamic programming energy management strategy for a vehicle power-split hybrid powertrain," Energy, Elsevier, vol. 256(C).
    19. Xie, Shanshan & He, Hongwen & Peng, Jiankun, 2017. "An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 196(C), pages 279-288.
    20. Zhang, Shuo & Xiong, Rui & Zhang, Chengning, 2015. "Pontryagin’s Minimum Principle-based power management of a dual-motor-driven electric bus," Applied Energy, Elsevier, vol. 159(C), pages 370-380.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1096-:d:105946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.