IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1074-d105765.html
   My bibliography  Save this article

Parametric Investigation Using Computational Fluid Dynamics of the HVAC Air Distribution in a Railway Vehicle for Representative Weather and Operating Conditions

Author

Listed:
  • Christian Suárez

    (AICIA, Andalusian Association for Research & Industrial Cooperation, Camino de los Descubrimientos s/n, Edf. Escuela Superior de Ingenieros de Sevilla, 41092 Seville, Spain)

  • Alfredo Iranzo

    (Thermal Engineering Group, Energy Engineering Department, School of Engineering, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain)

  • José Antonio Salva

    (AICIA, Andalusian Association for Research & Industrial Cooperation, Camino de los Descubrimientos s/n, Edf. Escuela Superior de Ingenieros de Sevilla, 41092 Seville, Spain)

  • Elvira Tapia

    (Thermal Engineering Group, Energy Engineering Department, School of Engineering, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain)

  • Gonzalo Barea

    (Hispacold, C/Pino Alepo 1, Polígono Industrial El Pino, 41016 Seville, Spain)

  • José Guerra

    (Thermal Engineering Group, Energy Engineering Department, School of Engineering, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain)

Abstract

A computational fluid dynamics (CFD) analysis of air distribution in a representative railway vehicle equipped with a heating, ventilation, air conditioning (HVAC) system is presented in this paper. Air distribution in the passenger’s compartment is a very important factor to regulate temperature and air velocity in order to achieve thermal comfort. A complete CFD model, including the car’s geometry in detail, the passengers, the luminaires, and other the important features related to the HVAC system (air supply inlets, exhaust outlets, convectors, etc.) are developed to investigate eight different typical scenarios for Northern Europe climate conditions. The results, analyzed and discussed in terms of temperature and velocity fields in different sections of the tram, and also in terms of volumetric parameters representative of the whole tram volume, show an adequate behavior from the passengers’ comfort point of view, especially for summer climate conditions.

Suggested Citation

  • Christian Suárez & Alfredo Iranzo & José Antonio Salva & Elvira Tapia & Gonzalo Barea & José Guerra, 2017. "Parametric Investigation Using Computational Fluid Dynamics of the HVAC Air Distribution in a Railway Vehicle for Representative Weather and Operating Conditions," Energies, MDPI, vol. 10(8), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1074-:d:105765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chow, W. K., 2002. "Ventilation of enclosed train compartments in Hong Kong," Applied Energy, Elsevier, vol. 71(3), pages 161-170, March.
    2. Thompson, J.A. & Maidment, G.G. & Missenden, J.F., 2006. "Modelling low-energy cooling strategies for underground railways," Applied Energy, Elsevier, vol. 83(10), pages 1152-1162, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behrouz Pirouz & Domenico Mazzeo & Stefania Anna Palermo & Seyed Navid Naghib & Michele Turco & Patrizia Piro, 2021. "CFD Investigation of Vehicle’s Ventilation Systems and Analysis of ACH in Typical Airplanes, Cars, and Buses," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    2. Saboora Khatoon & Man-Hoe Kim, 2017. "Human Thermal Comfort and Heat Removal Efficiency for Ventilation Variants in Passenger Cars," Energies, MDPI, vol. 10(11), pages 1-13, October.
    3. Bjørn H. Hjertager, 2017. "Engineering Fluid Dynamics," Energies, MDPI, vol. 10(10), pages 1-2, September.
    4. Saboora Khatoon & Man-Hoe Kim, 2020. "Thermal Comfort in the Passenger Compartment Using a 3-D Numerical Analysis and Comparison with Fanger’s Comfort Models," Energies, MDPI, vol. 13(3), pages 1-15, February.
    5. Dāvis BUŠS & Jānis EIDUKS, 2019. "Controlling Of Train’S Interior Heating System For Maximum Energy Efficiency," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(3), pages 121-134, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    2. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2016. "Development of a statistical analysis model to benchmark the energy use intensity of subway stations," Applied Energy, Elsevier, vol. 179(C), pages 488-496.
    3. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2022. "Energy, economic, and environmental impacts of enhanced ventilation strategies on railway coaches to reduce Covid-19 contagion risks," Energy, Elsevier, vol. 256(C).
    4. Chi Wing To & Wan Ki Chow & Fang Ming Cheng, 2021. "Simulation of Possible Fire and Explosion Hazards of Clean Fuel Vehicles in Garages," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    5. Qi Yuan & Hongqinq Zhu & Xiaolei Zhang & Baozhen Zhang & Xingkai Zhang, 2022. "An Integrated Quantitative Risk Assessment Method for Underground Engineering Fires," IJERPH, MDPI, vol. 19(24), pages 1-26, December.
    6. Yanzhe Yu & Shijun You & Shen Wei & Huan Zhang & Tianzhen Ye & Yaran Wang & Yanling Na, 2022. "Exploring the Applicability of Building Energy Performance Certification Systems in Underground Stations in China," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    7. Wolfgang Raedle & K. Ghazi Wakili & Christoph Geyer & Roman Hausammann & Urs Uehlinger, 2022. "Heat and Moisture Relevant In Situ Measurements in a Railway Passenger Vehicle Driving through the Swiss Alpine Region," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    8. Yu, Yanzhe & You, Shijun & Zhang, Huan & Ye, Tianzhen & Wang, Yaran & Wei, Shen, 2021. "A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1074-:d:105765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.