Ventilation of enclosed train compartments in Hong Kong
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chow, W.K. & Yu, Philip C.H., 2000. "Simulation on energy use for mechanical ventilation and air-conditioning (MVAC) systems in train compartments," Energy, Elsevier, vol. 25(1), pages 1-13.
- Chow, W. K., 2001. "Numerical studies of airflows induced by mechanical ventilation and air-conditioning (MVAC) systems," Applied Energy, Elsevier, vol. 68(2), pages 135-159, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wolfgang Raedle & K. Ghazi Wakili & Christoph Geyer & Roman Hausammann & Urs Uehlinger, 2022. "Heat and Moisture Relevant In Situ Measurements in a Railway Passenger Vehicle Driving through the Swiss Alpine Region," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
- Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2022. "Energy, economic, and environmental impacts of enhanced ventilation strategies on railway coaches to reduce Covid-19 contagion risks," Energy, Elsevier, vol. 256(C).
- Chi Wing To & Wan Ki Chow & Fang Ming Cheng, 2021. "Simulation of Possible Fire and Explosion Hazards of Clean Fuel Vehicles in Garages," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
- Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
- Christian Suárez & Alfredo Iranzo & José Antonio Salva & Elvira Tapia & Gonzalo Barea & José Guerra, 2017. "Parametric Investigation Using Computational Fluid Dynamics of the HVAC Air Distribution in a Railway Vehicle for Representative Weather and Operating Conditions," Energies, MDPI, vol. 10(8), pages 1-13, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Teng-Yi Wang & Kuang-Chung Tsai, 2021. "Effects of Time to Unactuate Air Conditioning on Fire Growth," Energies, MDPI, vol. 14(11), pages 1-15, May.
- Shi, W.X. & Ji, J. & Sun, J.H. & Lo, S.M. & Li, L.J. & Yuan, X.Y., 2014. "Influence of staircase ventilation state on the airflow and heat transfer of the heated room on the middle floor of high rise building," Applied Energy, Elsevier, vol. 119(C), pages 173-180.
- Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
- Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
- Mao, Ning & Song, Mengjie & Deng, Shiming, 2016. "Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort," Applied Energy, Elsevier, vol. 180(C), pages 536-545.
- Sala, J.M. & González, L.M. López & Míguez, J.L. & Eguía, J.J. & Vicuña, J.E. & Juárez, M.C. & Doménech, J., 2005. "Improvement of a chain-hardening furnace by computational fluid dynamics (CFD) simulation," Applied Energy, Elsevier, vol. 81(3), pages 260-276, July.
- Bruno, Roberto & Bevilacqua, Piero & Cuconati, Teresa & Arcuri, Natale, 2019. "Energy evaluations of an innovative multi-storey wooden near Zero Energy Building designed for Mediterranean areas," Applied Energy, Elsevier, vol. 238(C), pages 929-941.
- Sala, J.M. & López-González, L.M. & Ruiz de Adana, M. & Eguía, J. & Flores, I. & Míguez, J.L., 2006. "Optimising ventilation-system design for a container-housed engine," Applied Energy, Elsevier, vol. 83(10), pages 1125-1138, October.
- Chow, W. K., 2004. "Wind-induced indoor-air flow in a high-rise building adjacent to a vertical wall," Applied Energy, Elsevier, vol. 77(2), pages 225-234, February.
More about this item
Keywords
Train compartment Ventilation design Carbon dioxide level;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:71:y:2002:i:3:p:161-170. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.