IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p842-d102476.html
   My bibliography  Save this article

Applicability of an Artificial Neural Network for Predicting Water-Alternating-CO 2 Performance

Author

Listed:
  • Si Le Van

    (Department of Energy Resources Engineering, Inha University, Incheon 402-751, Korea)

  • Bo Hyun Chon

    (Department of Energy Resources Engineering, Inha University, Incheon 402-751, Korea)

Abstract

The injection of CO 2 as part of the water-alternating-gas (WAG) process has been widely employed in many mature oil fields for effectively enhancing oil production and sequestrating carbon permanently inside the reservoirs. In addition to simulations, the use of intelligent tools is of particular interest for evaluating the uncertainties in the WAG process and predicting technical or economic performance. This study proposed the comprehensive evaluations of a water-alternating-CO 2 process utilizing the artificial neural network (ANN) models that were initially generated from a qualified numerical data set. Totally two uncertain reservoir parameters and three installed surface operating factors were designed as input variables in each of the three-layer ANN models to predicting a series of WAG production performances after 5, 15, 25, and 35 injection cycles. In terms of the technical view point, the relationships among parameters and important outputs, including oil recovery, CO 2 production, and net CO 2 storage were accurately reflected by integrating the generated network models. More importantly, since the networks could simulate a series of injection processes, the sequent variations of those technical issues were well presented, indicating the distinct application of ANN in this study compared to previous works. The economic terms were also briefly introduced for a given fiscal condition which included sufficient concerns for a general CO 2 flooding project, in a range of possible oil prices. Using the ANN models, the net present value (NPV) optimization results for several specific cases apparently expressed the profitability of the present enhanced oil recovery (EOR) project according to the unstable oil prices, and most importantly provided the most relevant injection schedules corresponding with each different scenario. Obviously, the methodology of applying traditional ANN as shown in this study can be adaptively adjusted for any other EOR project, and in particular, since the models have demonstrated their flexible capacity for economic analyses, the method can be promisingly developed to engage with other economic tools on comprehensively assessing the project.

Suggested Citation

  • Si Le Van & Bo Hyun Chon, 2017. "Applicability of an Artificial Neural Network for Predicting Water-Alternating-CO 2 Performance," Energies, MDPI, vol. 10(7), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:842-:d:102476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Bo & Ren, Shaoran & Zhang, Liang & Chen, Guoli & Zhang, Hua, 2016. "Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China," Energy, Elsevier, vol. 98(C), pages 108-121.
    2. Mohammad Ali Ahmadi & Alireza Ahmadi, 2016. "Applying a sophisticated approach to predict CO2 solubility in brines: application to CO2 sequestration," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 325-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinkai Wang & Hengyi Liu & Jinliang Zhang & Jun Xie, 2018. "Lost Gas Mechanism and Quantitative Characterization during Injection and Production of Water-Flooded Sandstone Underground Gas Storage," Energies, MDPI, vol. 11(2), pages 1-26, January.
    2. Emad A. Al-Khdheeawi & Doaa Saleh Mahdi, 2019. "Apparent Viscosity Prediction of Water-Based Muds Using Empirical Correlation and an Artificial Neural Network," Energies, MDPI, vol. 12(16), pages 1-10, August.
    3. Emad A. Al-Khdheeawi, 2024. "Optimizing CO 2 -Water Injection Ratio in Heterogeneous Reservoirs: Implications for CO 2 Geo-Storage," Energies, MDPI, vol. 17(3), pages 1-14, January.
    4. Bocoum, Alassane Oumar & Rasaei, Mohammad Reza, 2023. "Multi-objective optimization of WAG injection using machine learning and data-driven Proxy models," Applied Energy, Elsevier, vol. 349(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Qian & Shenglai Yang & Hongen Dou & Qian Wang & Lu Wang & Yu Huang, 2018. "Experimental Investigation on Microscopic Residual Oil Distribution During CO 2 Huff-and-Puff Process in Tight Oil Reservoirs," Energies, MDPI, vol. 11(10), pages 1-16, October.
    2. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    3. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    4. Ghorbani, Bahram & Salehi, Gholamreza & Ebrahimi, Armin & Taghavi, Masoud, 2021. "Energy, exergy and pinch analyses of a novel energy storage structure using post-combustion CO2 separation unit, dual pressure Linde-Hampson liquefaction system, two-stage organic Rankine cycle and ge," Energy, Elsevier, vol. 233(C).
    5. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    6. Jing, Jing & Yang, Yanlin & Cheng, Jianmei & Ding, Zhaojing & Wang, Dandan & Jing, Xianwen, 2023. "Analysis of the effect of formation dip angle and injection pressure on the injectivity and migration of CO2 during storage," Energy, Elsevier, vol. 280(C).
    7. Lingbin Meng & Jing Zheng & Ruizhao Yang & Suping Peng & Yuan Sun & Jingyu Xie & Dewei Li, 2023. "Microseismic Monitoring Technology Developments and Prospects in CCUS Injection Engineering," Energies, MDPI, vol. 16(7), pages 1-21, March.
    8. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    9. Aysylu Askarova & Aliya Mukhametdinova & Strahinja Markovic & Galiya Khayrullina & Pavel Afanasev & Evgeny Popov & Elena Mukhina, 2023. "An Overview of Geological CO 2 Sequestration in Oil and Gas Reservoirs," Energies, MDPI, vol. 16(6), pages 1-34, March.
    10. Chen, Bailian & Harp, Dylan R. & Lin, Youzuo & Keating, Elizabeth H. & Pawar, Rajesh J., 2018. "Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach," Applied Energy, Elsevier, vol. 225(C), pages 332-345.
    11. Zuloaga, Pavel & Yu, Wei & Miao, Jijun & Sepehrnoori, Kamy, 2017. "Performance evaluation of CO2 Huff-n-Puff and continuous CO2 injection in tight oil reservoirs," Energy, Elsevier, vol. 134(C), pages 181-192.
    12. Ramezanizadeh, Mahdi & Ahmadi, Mohammad Hossein & Nazari, Mohammad Alhuyi & Sadeghzadeh, Milad & Chen, Lingen, 2019. "A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Zhang, Lisong & Zhang, Shiyan & Jiang, Weizhai & Wang, Zhiyuan & Li, Jing & Bian, Yinghui, 2018. "A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage," Energy, Elsevier, vol. 165(PB), pages 1178-1190.
    14. Zhang, Xiang & Wei, Bing & You, Junyu & Liu, Jiang & Wang, Dianlin & Lu, Jun & Tong, Jing, 2021. "Characterizing pore-level oil mobilization processes in unconventional reservoirs assisted by state-of-the-art nuclear magnetic resonance technique," Energy, Elsevier, vol. 236(C).
    15. Liu, Bingsheng & Liu, Song & Xue, Bin & Lu, Shijian & Yang, Yang, 2021. "Formalizing an integrated decision-making model for the risk assessment of carbon capture, utilization, and storage projects: From a sustainability perspective," Applied Energy, Elsevier, vol. 303(C).
    16. Yang, Mingyang & Huang, Shijun & Zhao, Fenglan & Sun, Haoyue & Chen, Xinyang, 2024. "Experimental investigation of CO2 huff-n-puff in tight oil reservoirs: Effects of the fracture on the dynamic transport characteristics based on the nuclear magnetic resonance and fractal theory," Energy, Elsevier, vol. 294(C).
    17. Wang, Xiao & van ’t Veld, Klaas & Marcy, Peter & Huzurbazar, Snehalata & Alvarado, Vladimir, 2018. "Economic co-optimization of oil recovery and CO2 sequestration," Applied Energy, Elsevier, vol. 222(C), pages 132-147.
    18. Vo Thanh, Hung & Lee, Kang-Kun, 2022. "Application of machine learning to predict CO2 trapping performance in deep saline aquifers," Energy, Elsevier, vol. 239(PE).
    19. Xingbang Meng & Zhan Meng & Jixiang Ma & Tengfei Wang, 2018. "Performance Evaluation of CO 2 Huff-n-Puff Gas Injection in Shale Gas Condensate Reservoirs," Energies, MDPI, vol. 12(1), pages 1-18, December.
    20. Yuan Zhang & Yuan Di & Yang Shi & Jinghong Hu, 2018. "Cyclic CH 4 Injection for Enhanced Oil Recovery in the Eagle Ford Shale Reservoirs," Energies, MDPI, vol. 11(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:842-:d:102476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.