IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3094-d181615.html
   My bibliography  Save this article

Cyclic CH 4 Injection for Enhanced Oil Recovery in the Eagle Ford Shale Reservoirs

Author

Listed:
  • Yuan Zhang

    (Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation and Development Engineering, China University of Geosciences (Beijing), Beijing 100083, China)

  • Yuan Di

    (College of Engineering, Peking University, Beijing 100871, China)

  • Yang Shi

    (Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China)

  • Jinghong Hu

    (Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation and Development Engineering, China University of Geosciences (Beijing), Beijing 100083, China)

Abstract

Gas injection is one of the most effective enhanced oil recovery methods for the unconventional reservoirs. Recently, CH 4 has been widely used; however, few studies exist to accurately evaluate the cyclic CH 4 injection considering molecular diffusion and nanopore effects. Additionally, the effects of operation parameters are still not systematically understood. Therefore, the objective of this work is to build an efficient numerical model to investigate the impacts of molecular diffusion, capillary pressure, and operation parameters. The confined phase behavior was incorporated in the model considering the critical property shifts and capillary pressure. Subsequently, we built a field-scale simulation model of the Eagle Ford shale reservoir. The fluid properties under different pore sizes were evaluated. Finally, a series of studies were conducted to examine the contributions of each key parameter on the well production. Results of sensitivity analysis indicate that the effect of confinement and molecular diffusion significantly influence CH 4 injection effectiveness, followed by matrix permeability, injection rate, injection time, and number of cycles. Primary depletion period and soaking time are less noticeable for the well performance in the selected case. Considering the effect of confinement and molecular diffusion leads to the increase in the well performance during the CH 4 injection process. This work, for the first time, evaluates the nanopore effects and molecular diffusion on the CH 4 injection. It provides an efficient numerical method to predict the well production in the EOR process. Additionally, it presents useful insights into the prediction of cyclic CH 4 injection effectiveness and helps operators to optimize the EOR process in the shale reservoirs.

Suggested Citation

  • Yuan Zhang & Yuan Di & Yang Shi & Jinghong Hu, 2018. "Cyclic CH 4 Injection for Enhanced Oil Recovery in the Eagle Ford Shale Reservoirs," Energies, MDPI, vol. 11(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3094-:d:181615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhaohui Xu & Peiqiang Zhao & Zhenlin Wang & Mehdi Ostadhassan & Zhonghua Pan, 2018. "Characterization and Consecutive Prediction of Pore Structures in Tight Oil Reservoirs," Energies, MDPI, vol. 11(10), pages 1-15, October.
    2. Ren, Bo & Ren, Shaoran & Zhang, Liang & Chen, Guoli & Zhang, Hua, 2016. "Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China," Energy, Elsevier, vol. 98(C), pages 108-121.
    3. Kun Qian & Shenglai Yang & Hongen Dou & Qian Wang & Lu Wang & Yu Huang, 2018. "Experimental Investigation on Microscopic Residual Oil Distribution During CO 2 Huff-and-Puff Process in Tight Oil Reservoirs," Energies, MDPI, vol. 11(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yukun Dong & Yu Zhang & Fubin Liu & Zhengjun Zhu, 2022. "Research on an Optimization Method for Injection-Production Parameters Based on an Improved Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 15(8), pages 1-18, April.
    2. Pengfei Zhao & Xiangyu Fan & Qiangui Zhang & Xiang Wang & Mingming Zhang & Jiawei Ran & Da Lv & Jinhua Liu & Juntian Shuai & Hao Wu, 2019. "The Effect of Hydration on Pores of Shale Oil Reservoirs in the Third Submember of the Triassic Chang 7 Member in Southern Ordos Basin," Energies, MDPI, vol. 12(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Bo & He, Xiaobiao & Li, Xin & Ju, Yiwen & Jin, Jun & Luo, Qiang, 2023. "Residual oil contents of dolomicrite and sandy dolomite tight oil reservoirs after CO2 huff and puff: An experimental study," Energy, Elsevier, vol. 275(C).
    2. Shiming Zhang & Chunlei Yu & Junwei Su & Dengke Liu, 2022. "Splicing Method of Micro-Nano-Scale Pore Radius Distribution in Tight Sandstone Reservoir," Energies, MDPI, vol. 15(5), pages 1-10, February.
    3. Kun Qian & Shenglai Yang & Hongen Dou & Qian Wang & Lu Wang & Yu Huang, 2018. "Experimental Investigation on Microscopic Residual Oil Distribution During CO 2 Huff-and-Puff Process in Tight Oil Reservoirs," Energies, MDPI, vol. 11(10), pages 1-16, October.
    4. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    5. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    6. Tao Li & Ying Wang & Min Li & Jiahao Ji & Lin Chang & Zheming Wang, 2019. "Study on the Impacts of Capillary Number and Initial Water Saturation on the Residual Gas Distribution by NMR," Energies, MDPI, vol. 12(14), pages 1-15, July.
    7. Zhengdong Lei & Yishan Liu & Rui Wang & Lei Li & Yuqi Liu & Yuanqing Zhang, 2022. "A Microfluidic Experiment on CO 2 Injection for Enhanced Oil Recovery in a Shale Oil Reservoir with High Temperature and Pressure," Energies, MDPI, vol. 15(24), pages 1-15, December.
    8. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    9. Jing, Jing & Yang, Yanlin & Cheng, Jianmei & Ding, Zhaojing & Wang, Dandan & Jing, Xianwen, 2023. "Analysis of the effect of formation dip angle and injection pressure on the injectivity and migration of CO2 during storage," Energy, Elsevier, vol. 280(C).
    10. Lingbin Meng & Jing Zheng & Ruizhao Yang & Suping Peng & Yuan Sun & Jingyu Xie & Dewei Li, 2023. "Microseismic Monitoring Technology Developments and Prospects in CCUS Injection Engineering," Energies, MDPI, vol. 16(7), pages 1-21, March.
    11. Pengfei Zhao & Xiangyu Fan & Qiangui Zhang & Xiang Wang & Mingming Zhang & Jiawei Ran & Da Lv & Jinhua Liu & Juntian Shuai & Hao Wu, 2019. "The Effect of Hydration on Pores of Shale Oil Reservoirs in the Third Submember of the Triassic Chang 7 Member in Southern Ordos Basin," Energies, MDPI, vol. 12(20), pages 1-20, October.
    12. Feng Sha & Lizhi Xiao & Zhiqiang Mao & Chen Jia, 2018. "Petrophysical Characterization and Fractal Analysis of Carbonate Reservoirs of the Eastern Margin of the Pre-Caspian Basin," Energies, MDPI, vol. 12(1), pages 1-17, December.
    13. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    14. Aysylu Askarova & Aliya Mukhametdinova & Strahinja Markovic & Galiya Khayrullina & Pavel Afanasev & Evgeny Popov & Elena Mukhina, 2023. "An Overview of Geological CO 2 Sequestration in Oil and Gas Reservoirs," Energies, MDPI, vol. 16(6), pages 1-34, March.
    15. Jianmeng Sun & Ping Feng & Peng Chi & Weichao Yan, 2022. "Microscopic Conductivity Mechanism and Saturation Evaluation of Tight Sandstone Reservoirs: A Case Study from Bonan Oilfield, China," Energies, MDPI, vol. 15(4), pages 1-27, February.
    16. Chen, Bailian & Harp, Dylan R. & Lin, Youzuo & Keating, Elizabeth H. & Pawar, Rajesh J., 2018. "Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach," Applied Energy, Elsevier, vol. 225(C), pages 332-345.
    17. Zuloaga, Pavel & Yu, Wei & Miao, Jijun & Sepehrnoori, Kamy, 2017. "Performance evaluation of CO2 Huff-n-Puff and continuous CO2 injection in tight oil reservoirs," Energy, Elsevier, vol. 134(C), pages 181-192.
    18. Zhang, Lisong & Zhang, Shiyan & Jiang, Weizhai & Wang, Zhiyuan & Li, Jing & Bian, Yinghui, 2018. "A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage," Energy, Elsevier, vol. 165(PB), pages 1178-1190.
    19. Zhang, Xiang & Wei, Bing & You, Junyu & Liu, Jiang & Wang, Dianlin & Lu, Jun & Tong, Jing, 2021. "Characterizing pore-level oil mobilization processes in unconventional reservoirs assisted by state-of-the-art nuclear magnetic resonance technique," Energy, Elsevier, vol. 236(C).
    20. Liu, Bingsheng & Liu, Song & Xue, Bin & Lu, Shijian & Yang, Yang, 2021. "Formalizing an integrated decision-making model for the risk assessment of carbon capture, utilization, and storage projects: From a sustainability perspective," Applied Energy, Elsevier, vol. 303(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3094-:d:181615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.