IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p834-d102305.html
   My bibliography  Save this article

Hybrid Photovoltaic Systems with Accumulation—Support for Electric Vehicle Charging

Author

Listed:
  • Petr Mastny

    (Department of Electrical Power Engineering, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic)

  • Jan Moravek

    (Department of Electrical Power Engineering, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic)

  • Martin Vojtek

    (Department of Electric Power Engineering, Technical University of Košice, Mäsiarska 74, Košice 04001, Slovakia)

  • Jiri Drapela

    (Department of Electrical Power Engineering, Brno University of Technology, Technicka 12, Brno 61600, Czech Republic)

Abstract

The paper presents the concept of a hybrid power system with additional energy storage to support electric vehicles (EVs) charging stations. The aim is to verify the possibilities of mutual cooperation of individual elements of the system from the point of view of energy balances and to show possibilities of utilization of accumulation for these purposes using mathematical modeling. The description of the technical solution of the concept is described by a mathematical model in the Matlab Simulink programming environment. Individual elements of the assembled model are described in detail, together with the algorithm of the control logic of charging the supporting storage system. The resulting model was validated via an actual small-scale hybrid system (HS). Within the outputs of the mathematical model, two simulation scenarios are presented, with the aid of which the benefits of the concept presented were verified.

Suggested Citation

  • Petr Mastny & Jan Moravek & Martin Vojtek & Jiri Drapela, 2017. "Hybrid Photovoltaic Systems with Accumulation—Support for Electric Vehicle Charging," Energies, MDPI, vol. 10(7), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:834-:d:102305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    2. Orioli, Aldo & Di Gangi, Alessandra, 2013. "A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data," Applied Energy, Elsevier, vol. 102(C), pages 1160-1177.
    3. Luigi Piegari & Renato Rizzo & Ivan Spina & Pietro Tricoli, 2015. "Optimized Adaptive Perturb and Observe Maximum Power Point Tracking Control for Photovoltaic Generation," Energies, MDPI, vol. 8(5), pages 1-19, April.
    4. Javier Cubas & Santiago Pindado & Carlos De Manuel, 2014. "Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function," Energies, MDPI, vol. 7(7), pages 1-18, June.
    5. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2009. "A current and future state of art development of hybrid energy system using wind and PV-solar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2096-2103, October.
    6. Canras Batunlu & Mohamad Alrweq & Alhussein Albarbar, 2016. "Effects of Power Tracking Algorithms on Lifetime of Power Electronic Devices Used in Solar Systems," Energies, MDPI, vol. 9(11), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Steinschaden & José Baptista, 2020. "Development of an Efficient Tool for Solar Charging Station Management for Electric Vehicles," Energies, MDPI, vol. 13(11), pages 1-21, June.
    2. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.
    3. Michele Zanoni & Riccardo Chiumeo & Liliana Tenti & Massimo Volta, 2021. "Advanced Machine Learning Functionalities in the Medium Voltage Distributed Monitoring System QuEEN: A Macro-Regional Voltage Dips Severity Analysis," Energies, MDPI, vol. 14(23), pages 1-25, November.
    4. Marco Faifer & Christian Laurano & Roberto Ottoboni & Sergio Toscani & Michele Zanoni, 2020. "Frequency-Domain Nonlinear Modeling Approaches for Power Systems Components—A Comparison," Energies, MDPI, vol. 13(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    2. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    4. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    7. Pindado, Santiago & Cubas, Javier, 2017. "Simple mathematical approach to solar cell/panel behavior based on datasheet information," Renewable Energy, Elsevier, vol. 103(C), pages 729-738.
    8. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    9. Senturk, A. & Eke, R., 2017. "A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values," Renewable Energy, Elsevier, vol. 103(C), pages 58-69.
    10. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    11. de Paulo, Alex Fabianne & Nunes, Breno & Porto, Geciane, 2020. "Emerging green technologies for vehicle propulsion systems," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    12. Deihimi, M.H. & Naghizadeh, R.A. & Meyabadi, A. Fattahi, 2016. "Systematic derivation of parameters of one exponential model for photovoltaic modules using numerical information of data sheet," Renewable Energy, Elsevier, vol. 87(P1), pages 676-685.
    13. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    14. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    15. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    16. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    17. Hossain, Md. Faruque, 2017. "Green science: Independent building technology to mitigate energy, environment, and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 695-705.
    18. Shi, Nan & Lv, Yanling & Zhang, Yuchen & Zhu, Xianhui, 2023. "Linear fitting Rule of I–V characteristics of thin-film cells based on Bezier function," Energy, Elsevier, vol. 278(PB).
    19. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    20. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:834-:d:102305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.