IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p1024-d105189.html
   My bibliography  Save this article

Secure Plug-in Electric Vehicle (PEV) Charging in a Smart Grid Network

Author

Listed:
  • Khaled Shuaib

    (College of Information Technology, The United Arab Emirates University, Sheik Khalifa Bin Zayed Street P.O. Box 15551, Al Ain, UAE)

  • Ezedin Barka

    (College of Information Technology, The United Arab Emirates University, Sheik Khalifa Bin Zayed Street P.O. Box 15551, Al Ain, UAE)

  • Juhar Ahmed Abdella

    (College of Information Technology, The United Arab Emirates University, Sheik Khalifa Bin Zayed Street P.O. Box 15551, Al Ain, UAE)

  • Farag Sallabi

    (College of Information Technology, The United Arab Emirates University, Sheik Khalifa Bin Zayed Street P.O. Box 15551, Al Ain, UAE)

  • Mohammed Abdel-Hafez

    (College of Engineering, The United Arab Emirates University, Sheik Khalifa Bin Zayed Street P.O. Box 15551, Al Ain, UAE)

  • Ala Al-Fuqaha

    (Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA)

Abstract

Charging of plug-in electric vehicles (PEVs) exposes smart grid systems and their users to different kinds of security and privacy attacks. Hence, a secure charging protocol is required for PEV charging. Existing PEV charging protocols are usually based on insufficiently represented and simplified charging models that do not consider the user’s charging modes (charging at a private location, charging as a guest user, roaming within one’s own supplier network or roaming within other suppliers’ networks). However, the requirement for charging protocols depends greatly on the user’s charging mode. Consequently, available solutions do not provide complete protocol specifications. Moreover, existing protocols do not support anonymous user authentication and payment simultaneously. In this paper, we propose a comprehensive end-to-end charging protocol that addresses the security and privacy issues in PEV charging. The proposed protocol uses nested signatures to protect users’ privacy from external suppliers, their own suppliers and third parties. Our approach supports anonymous user authentication, anonymous payment, as well as anonymous message exchange between suppliers within a hierarchical smart grid architecture. We have verified our protocol using the AVISPA software verification tool and the results showed that our protocol is secure and works as desired.

Suggested Citation

  • Khaled Shuaib & Ezedin Barka & Juhar Ahmed Abdella & Farag Sallabi & Mohammed Abdel-Hafez & Ala Al-Fuqaha, 2017. "Secure Plug-in Electric Vehicle (PEV) Charging in a Smart Grid Network," Energies, MDPI, vol. 10(7), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1024-:d:105189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/1024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/1024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
    2. San Román, Tomás Gómez & Momber, Ilan & Abbad, Michel Rivier & Sánchez Miralles, Álvaro, 2011. "Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships," Energy Policy, Elsevier, vol. 39(10), pages 6360-6375, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    2. Juhar Abdella & Khaled Shuaib, 2018. "Peer to Peer Distributed Energy Trading in Smart Grids: A Survey," Energies, MDPI, vol. 11(6), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    2. Knezović, Katarina & Marinelli, Mattia & Zecchino, Antonio & Andersen, Peter Bach & Traeholt, Chresten, 2017. "Supporting involvement of electric vehicles in distribution grids: Lowering the barriers for a proactive integration," Energy, Elsevier, vol. 134(C), pages 458-468.
    3. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    4. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    5. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    6. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    7. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
    8. Faria, Marta V. & Baptista, Patrícia C. & Farias, Tiago L., 2014. "Electric vehicle parking in European and American context: Economic, energy and environmental analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 110-121.
    9. Muhammad Kashif Rafique & Zunaib Maqsood Haider & Khawaja Khalid Mehmood & Muhammad Saeed Uz Zaman & Muhammad Irfan & Saad Ullah Khan & Chul-Hwan Kim, 2018. "Optimal Scheduling of Hybrid Energy Resources for a Smart Home," Energies, MDPI, vol. 11(11), pages 1-19, November.
    10. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    11. Nair, Sujith & Paulose, Hanna, 2014. "Emergence of green business models: The case of algae biofuel for aviation," Energy Policy, Elsevier, vol. 65(C), pages 175-184.
    12. César García Veloso & Kalle Rauma & Julián Fernández & Christian Rehtanz, 2020. "Real-Time Control of Plug-in Electric Vehicles for Congestion Management of Radial LV Networks: A Comparison of Implementations," Energies, MDPI, vol. 13(16), pages 1-19, August.
    13. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    14. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    15. Se Hoon Baik & Young Gyu Jin & Yong Tae Yoon, 2018. "Determining Equipment Capacity of Electric Vehicle Charging Station Operator for Profit Maximization," Energies, MDPI, vol. 11(9), pages 1-15, September.
    16. Wang, Ying-Wei & Lin, Chuah-Chih, 2013. "Locating multiple types of recharging stations for battery-powered electric vehicle transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 76-87.
    17. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    18. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Wu, Di & Radhakrishnan, Nikitha & Huang, Sen, 2019. "A hierarchical charging control of plug-in electric vehicles with simple flexibility model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1024-:d:105189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.