IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p800-d101224.html
   My bibliography  Save this article

The Influence of Small-Scale Power Plant Supporting Schemes on the Public Trader and Consumers

Author

Listed:
  • Renata Varfolomejeva

    (Institute of Power Engineering, Riga Technical University, Azenes Str. 12/1, LV-1069 Riga, Latvia)

  • Antans Sauhats

    (Institute of Power Engineering, Riga Technical University, Azenes Str. 12/1, LV-1069 Riga, Latvia)

  • Nikita Sokolovs

    (Institute of Power Engineering, Riga Technical University, Azenes Str. 12/1, LV-1069 Riga, Latvia)

  • Hasan Coban

    (Mmeka Construction and Industry Trade Inc. Orucreis Mah. Tekstilkent Koza Plaza. A Blok. Kat 12. No.:46, Esenler, 34220 Istanbul, Turkey)

Abstract

The mechanism of support schemes for achieving the required share of renewable energy sources (RES) was implemented into the energy sector. The issued amount of support requires state subsidies. The end-users of electricity are paying the mandatory procurement component taxes to cover these subsidies. The article examines the way of minimizing the influence of the existing RES supporting schemes on the consumers. The fixed purchased electricity price in the case of RES does not encourage producers to operate at hours of peak consumption or when the price is high. Modification of the RES support mechanisms at the legislative level, firstly, could minimize the influence of the mandatory procurement component on the end-users’ electricity price, and secondly, could provide a great opportunity for the public trader to forecast the operation of small power plants and their generation abilities. Numerical experiments with models of two types of power plants (biofuel and hydropower) prove the existence of a problem and the presence of a solution. This problem constitutes the main subject of the present paper.

Suggested Citation

  • Renata Varfolomejeva & Antans Sauhats & Nikita Sokolovs & Hasan Coban, 2017. "The Influence of Small-Scale Power Plant Supporting Schemes on the Public Trader and Consumers," Energies, MDPI, vol. 10(6), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:800-:d:101224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/800/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klinge Jacobsen, Henrik & Pade, Lise Lotte & Schröder, Sascha Thorsten & Kitzing, Lena, 2014. "Cooperation mechanisms to achieve EU renewable targets," Renewable Energy, Elsevier, vol. 63(C), pages 345-352.
    2. Gawel, Erik & Strunz, Sebastian & Lehmann, Paul, 2014. "A public choice view on the climate and energy policy mix in the EU — How do the emissions trading scheme and support for renewable energies interact?," Energy Policy, Elsevier, vol. 64(C), pages 175-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    2. Simona-Vasilica Oprea & Adela Bâra, 2017. "Analyses of Wind and Photovoltaic Energy Integration from the Promoting Scheme Point of View: Study Case of Romania," Energies, MDPI, vol. 10(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2016. "Renewable energy scenarios for costs reductions in the European Union," Renewable Energy, Elsevier, vol. 96(PA), pages 80-90.
    2. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul, 2016. "The political economy of renewable energy policies in Germany and the EU," Utilities Policy, Elsevier, vol. 42(C), pages 33-41.
    3. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    4. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2015. "Policy convergence: A conceptual framework based on lessons from renewable energy policies in the EU," UFZ Discussion Papers 14/2015, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Antimiani, Alessandro & Costantini, Valeria & Kuik, Onno & Paglialunga, Elena, 2016. "Mitigation of adverse effects on competitiveness and leakage of unilateral EU climate policy: An assessment of policy instruments," Ecological Economics, Elsevier, vol. 128(C), pages 246-259.
    6. Natalia Sajnóg & Katarzyna Sobolewska-Mikulska & Justyna Wójcik-Leń, 2019. "Methodology of Determination of the Range of Restrictions Related to the Existence of Transmission Devices on Private Land—Case Study of Poland," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    7. Muhammad Shahid Mastoi & Hafiz Mudassir Munir & Shenxian Zhuang & Mannan Hassan & Muhammad Usman & Ahmad Alahmadi & Basem Alamri, 2022. "A Comprehensive Analysis of the Power Demand–Supply Situation, Electricity Usage Patterns, and the Recent Development of Renewable Energy in China," Sustainability, MDPI, vol. 14(6), pages 1-34, March.
    8. Papapostolou, Aikaterini & Karakosta, Charikleia & Nikas, Alexandros & Psarras, John, 2017. "Exploring opportunities and risks for RES-E deployment under Cooperation Mechanisms between EU and Western Balkans: A multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 519-530.
    9. Sebastian Strunz, Erik Gawel, and Paul Lehmann, 2015. "Towards a general Europeanization of EU Member States energy policies?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    10. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    11. Spyridaki, N.-A. & Flamos, A., 2014. "A paper trail of evaluation approaches to energy and climate policy interactions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1090-1107.
    12. Jesse D. Jenkins & Valerie J. Karplus, 2016. "Carbon pricing under binding political constraints," WIDER Working Paper Series 044, World Institute for Development Economic Research (UNU-WIDER).
    13. Konsta Värri & Sanna Syri, 2019. "The Possible Role of Modular Nuclear Reactors in District Heating: Case Helsinki Region," Energies, MDPI, vol. 12(11), pages 1-24, June.
    14. Zeng, Yingying, 2017. "Indirect double regulation and the carbon ETSs linking: The case of coal-fired generation in the EU and China," Energy Policy, Elsevier, vol. 111(C), pages 268-280.
    15. Geoffroy Dolphin & Michael G Pollitt & David M Newbery, 2020. "The political economy of carbon pricing: a panel analysis," Oxford Economic Papers, Oxford University Press, vol. 72(2), pages 472-500.
    16. Andreea ZAMFIR, 2014. "Developing URBAN RENEWABLE ENERGY PROJECTS: OPPORTUNITIES AND CHALLENGES FOR ROMANIA," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 9(4), pages 52-64, November.
    17. Natàlia Caldés & Pablo Del Río & Yolanda Lechón & Agime Gerbeti, 2018. "Renewable Energy Cooperation in Europe: What Next? Drivers and Barriers to the Use of Cooperation Mechanisms," Energies, MDPI, vol. 12(1), pages 1-22, December.
    18. Herbes, Carsten & Rilling, Benedikt & MacDonald, Scott & Boutin, Nathalie & Bigerna, Simona, 2020. "Are voluntary markets effective in replacing state-led support for the expansion of renewables? – A comparative analysis of voluntary green electricity markets in the UK, Germany, France and Italy," Energy Policy, Elsevier, vol. 141(C).
    19. Amedeo Argentiero & Tarek Atalla & Simona Bigerna & Silvia Micheli & Paolo Polinori, 2017. "Comparing Renewable Energy Policies in E.U.15, U.S. and China: A Bayesian DSGE Model," The Energy Journal, , vol. 38(1_suppl), pages 77-96, June.
    20. Andreea-Ileana Zamfir & Elena Oana Croitoru & Cristina Burlacioiu & Cosmin Dobrin, 2022. "Renewable Energies: Economic and Energy Impact in the Context of Increasing the Share of Electric Cars in EU," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:800-:d:101224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.