IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p505-d73084.html
   My bibliography  Save this article

High Pressure Oxydesulphurisation of Coal—Effect of Oxidizing Agent, Solvent, Shear and Agitator Configuration

Author

Listed:
  • Moinuddin Ghauri

    (Department of Chemical Engineering, COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan)

  • Khurram Shahzad

    (Centre for Coal Technology, University of the Punjab, Lahore 54000, Pakistan)

  • Abrar Inayat

    (Department of Sustainable & Renewable Energy Engineering, University of Sharjah, Sharjah 27272, UAE)

  • Zulfiqar Ali

    (Department of Mining Engineering, University of Engineering and Technology, Lahore 54000, Pakistan)

  • Waqar Ali Khan

    (Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research, Faisalabad 38000, Pakistan)

  • Javaid Akhtar

    (Centre for Coal Technology, University of the Punjab, Lahore 54000, Pakistan)

  • Keith R. Cliffe

    (Department of Mechanical and Process Engineering, University of Sheffield, Sheffield S10 2TN, UK)

Abstract

The ambient temperature high pressure oxydesulphurisation technique was investigated to reduce the sulphur content. Prince of Wales coal was chosen for this study. The focus of the study was to investigate the reduction of both pyritic and organic sulphur while changing the KMnO 4 /Coal ratio, agitation speed, agitator configuration, and shear. The effect of different concentrations of acetone as a solvent and effect of particle size on the sulphur removal was also studied by a series of experimental runs at ambient temperature. Heating value recovery was found to be increased with the decreased KMnO 4 /Coal ratio and with decreased acetone concentration. It was found that sulphur removal was enhanced with the increase in shear using a turbine impeller. The effect of particle size was more significant on the pyritic sulphur removal as compared to the organic sulphur removal while heating value recovery was found to increase with decreased desulphurization tome for both, under atmospheric and high pressure.

Suggested Citation

  • Moinuddin Ghauri & Khurram Shahzad & Abrar Inayat & Zulfiqar Ali & Waqar Ali Khan & Javaid Akhtar & Keith R. Cliffe, 2016. "High Pressure Oxydesulphurisation of Coal—Effect of Oxidizing Agent, Solvent, Shear and Agitator Configuration," Energies, MDPI, vol. 9(7), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:505-:d:73084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ken K. Robinson, 2009. "Reaction Engineering of Direct Coal Liquefaction," Energies, MDPI, vol. 2(4), pages 1-31, October.
    2. Moinuddin Ghauri & Khurram Shahzad & Abrar Inayat & Zulfiqar Ali & Keith R. Cliffe, 2016. "High Pressure Oxydesulphurisation of Coal Using KMnO 4 —Effect of Coal Slurry Concentration, pH and Alkali," Energies, MDPI, vol. 9(4), pages 1-14, April.
    3. Chen, Wenying & Xu, Ruina, 2010. "Clean coal technology development in China," Energy Policy, Elsevier, vol. 38(5), pages 2123-2130, May.
    4. Hengfu Shui & Zhenyi Cai & Chunbao Xu, 2010. "Recent Advances in Direct Coal Liquefaction," Energies, MDPI, vol. 3(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moinuddin Ghauri & Khurram Shahzad & Abrar Inayat & Zulfiqar Ali & Keith R. Cliffe, 2016. "High Pressure Oxydesulphurisation of Coal Using KMnO 4 —Effect of Coal Slurry Concentration, pH and Alkali," Energies, MDPI, vol. 9(4), pages 1-14, April.
    2. Moinuddin Ghauri & Abrar Inayat & Muhammad Tariq Bashir & Salmiaton B. Ali & Keith R. Cliffe, 2013. "High Pressure Oxydesulphurisation of Coal—A Parametric Study," Energies, MDPI, vol. 6(4), pages 1-14, April.
    3. Ail, Snehesh Shivananda & Dasappa, S., 2016. "Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 267-286.
    4. Jiang, Yuan & Bhattacharyya, Debangsu, 2017. "Techno-economic analysis of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS)," Applied Energy, Elsevier, vol. 189(C), pages 433-448.
    5. Jiang, Yuan & Bhattacharyya, Debangsu, 2016. "Process modeling of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS)," Applied Energy, Elsevier, vol. 183(C), pages 1616-1632.
    6. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    7. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    8. Jianyun Zhang & Xinxin Li & Lingying Pan, 2022. "Policy Effect on Clean Coal-Fired Power Development in China," Energies, MDPI, vol. 15(3), pages 1-18, January.
    9. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    10. Xiaowei Song & Yongpei Hao, 2019. "Vehicular Emission Inventory and Reduction Scenario Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 16(23), pages 1-21, November.
    11. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2019. "Air Pollutant Emissions from Vehicles and Their Abatement Scenarios: A Case Study of Chengdu-Chongqing Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    12. Deng, Liangwei & Yang, Hongnan & Liu, Gangjin & Zheng, Dan & Chen, Ziai & Liu, Yi & Pu, Xiaodong & Song, Li & Wang, Zhiyong & Lei, Yunhui, 2014. "Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater," Applied Energy, Elsevier, vol. 134(C), pages 349-355.
    13. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    14. Enci Wang & Jianyun Nie & Hong Zhan, 2022. "The Impact of Carbon Emissions Trading on the Profitability and Debt Burden of Listed Companies," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    15. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.
    16. Hoffmann, Bettina Susanne & Szklo, Alexandre, 2011. "Integrated gasification combined cycle and carbon capture: A risky option to mitigate CO2 emissions of coal-fired power plants," Applied Energy, Elsevier, vol. 88(11), pages 3917-3929.
    17. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    18. Liu, Feng & Lyu, Tao & Pan, Li & Wang, Fei, 2017. "Influencing factors of public support for modern coal-fired power plant projects: An empirical study from China," Energy Policy, Elsevier, vol. 105(C), pages 398-406.
    19. Höller, Samuel & Viebahn, Peter, 2016. "Facing the uncertainty of CO2 storage capacity in China by developing different storage scenarios," Energy Policy, Elsevier, vol. 89(C), pages 64-73.
    20. Jun-You Lin & Chih-Hai Yang, 2020. "Heterogeneity in industry–university R&D collaboration and firm innovative performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:505-:d:73084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.