IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124005111.html
   My bibliography  Save this article

Evaluation of provincial renewable energy generation efficiency and spatio-temporal heterogeneity of influencing factors in China

Author

Listed:
  • Li, Wanying
  • Ji, Zhengsen
  • Dong, Fugui
  • Yang, Yugui

Abstract

The structure of renewable energy (RE) development varies substantially across China's provinces, and the spatio-temporal pattern evolution is too pronounced to allow direct comparisons. Therefore, a reasonable method for RE efficiency estimation is important. Markov and spatial Markov chains can be used to analyze the evolution of the temporal and spatial patterns of provincial RE. Simultaneously, data envelopment analysis game cross-efficiency evaluation can quantify the RE generation efficiency of each province from the perspective of competition. Nine factors were selected to identify the key influencing factors the RE generation efficiency. From the perspective of spatio-temporal heterogeneity, a geographically and temporally weighted regression model was combined for spatial modeling. Results show a significant change in the categories of wind and solar power installations, a medium change in biomass installations, and a small change in hydropower installations. Two-thirds of the provincial RE generation efficiency increased from 2015 to 2020. There is spatio-temporal heterogeneity regarding the impact of various factors on the RE generation efficiency: The impact of technology market transactions exhibits the greatest inter-provincial variation and the impact of electricity industry investment exhibits the smallest inter-provincial variation.

Suggested Citation

  • Li, Wanying & Ji, Zhengsen & Dong, Fugui & Yang, Yugui, 2024. "Evaluation of provincial renewable energy generation efficiency and spatio-temporal heterogeneity of influencing factors in China," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005111
    DOI: 10.1016/j.renene.2024.120446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsin, Muhammad & Hanif, Imran & Taghizadeh-Hesary, Farhad & Abbas, Qaiser & Iqbal, Wasim, 2021. "Nexus between energy efficiency and electricity reforms: A DEA-Based way forward for clean power development," Energy Policy, Elsevier, vol. 149(C).
    2. Jinpeng Liu & Yun Long & Xiaohua Song, 2017. "A Study on the Conduction Mechanism and Evaluation of the Comprehensive Efficiency of Photovoltaic Power Generation in China," Energies, MDPI, vol. 10(5), pages 1-22, May.
    3. Wang, Xin & Li, Zhengwei & Meng, Haixing & Wu, Jiang, 2017. "Identification of key energy efficiency drivers through global city benchmarking: A data driven approach," Applied Energy, Elsevier, vol. 190(C), pages 18-28.
    4. Wei Kang & Sergio J. Rey, 2018. "Conditional and joint tests for spatial effects in discrete Markov chain models of regional income distribution dynamics," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(1), pages 73-93, July.
    5. Jin Zhu & Dequn Zhou & Zhengning Pu & Huaping Sun, 2019. "A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    6. Xin Long Xu & Sen Qiao & Hsing Hung Chen, 2020. "Exploring the efficiency of new energy generation: Evidence from OECD and non-OECD countries," Energy & Environment, , vol. 31(3), pages 389-404, May.
    7. Ghorashi, Amir Hossein & Maranlou, Hadi, 2021. "Essential infrastructures and relevant policies for renewable energy developments in oil-rich developing countries: Case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2019. "Factors affecting the efficiency of wind power in the European Union countries," Energy Policy, Elsevier, vol. 132(C), pages 965-977.
    9. Xin-gang, Zhao & Zhen, Wei, 2019. "The technical efficiency of China's wind power list enterprises: An estimation based on DEA method and micro-data," Renewable Energy, Elsevier, vol. 133(C), pages 470-479.
    10. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Provincial energy efficiency of China quantified by three-stage data envelopment analysis," Energy, Elsevier, vol. 166(C), pages 96-107.
    11. Pan, Xiongfeng & Ai, Bowei & Li, Changyu & Pan, Xianyou & Yan, Yaobo, 2019. "Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 428-435.
    12. Wang, Bing & Wang, Qian & Wei, Yi-Ming & Li, Zhi-Ping, 2018. "Role of renewable energy in China’s energy security and climate change mitigation: An index decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 187-194.
    13. Zeng, Yuan & Guo, Waiying & Wang, Hongmei & Zhang, Fengbin, 2020. "A two-stage evaluation and optimization method for renewable energy development based on data envelopment analysis," Applied Energy, Elsevier, vol. 262(C).
    14. Jia Liu & Jizu Li & Xilong Yao, 2019. "The Economic Effects of the Development of the Renewable Energy Industry in China," Energies, MDPI, vol. 12(9), pages 1-18, May.
    15. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.
    16. Xie, Bai-Chen & Gao, Jie & Zhang, Shuang & Pang, Rui-Zhi & Zhang, ZhongXiang, 2018. "The environmental efficiency analysis of China’s power generation sector based on game cross-efficiency approach," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 126-135.
    17. Xu, Xiaofeng & Wei, Zhifei & Ji, Qiang & Wang, Chenglong & Gao, Guowei, 2019. "Global renewable energy development: Influencing factors, trend predictions and countermeasures," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    18. Yu, Bolin & Fang, Debin & Meng, Jingxuan, 2021. "Analysis of the generation efficiency of disaggregated renewable energy and its spatial heterogeneity influencing factors: A case study of China," Energy, Elsevier, vol. 234(C).
    19. Islam, Md. Monirul & Irfan, Muhammad & Shahbaz, Muhammad & Vo, Xuan Vinh, 2022. "Renewable and non-renewable energy consumption in Bangladesh: The relative influencing profiles of economic factors, urbanization, physical infrastructure and institutional quality," Renewable Energy, Elsevier, vol. 184(C), pages 1130-1149.
    20. Sheng-An Shi & Long Xia & Ming Meng, 2017. "Energy Efficiency and Its Driving Factors in China’s Three Economic Regions," Sustainability, MDPI, vol. 9(11), pages 1-13, November.
    21. Tao Yi & Ling Tong & Mohan Qiu & Jinpeng Liu, 2019. "Analysis of Driving Factors of Photovoltaic Power Generation Efficiency: A Case Study in China," Energies, MDPI, vol. 12(3), pages 1-15, January.
    22. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chia-Nan & Nguyen, Thi Thuy-Vy & Chiang, Chia-Chin & Le, Hoang-Dang, 2024. "Evaluating renewable energy consumption efficiency and impact factors in Asia-pacific economic cooperation countries: A new approach of DEA with undesirable output model," Renewable Energy, Elsevier, vol. 227(C).
    2. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Li, Na & Liu, Feng, 2022. "Spatiotemporal characteristics and influencing factors of renewable energy production in China: A spatial econometric analysis," Energy Economics, Elsevier, vol. 116(C).
    3. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    4. Sampene, Agyemang Kwasi & Li, Cai & Wiredu, John, 2024. "An outlook at the switch to renewable energy in emerging economies: The beneficial effect of technological innovation and green finance," Energy Policy, Elsevier, vol. 187(C).
    5. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    6. Lin, Yuanxiong & Anser, Muhammad Khalid & Peng, Michael Yao-Ping & Irfan, Muhammad, 2023. "Assessment of renewable energy, financial growth and in accomplishing targets of China's cities carbon neutrality," Renewable Energy, Elsevier, vol. 205(C), pages 1082-1091.
    7. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    8. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2022. "Multi-aspect efficiency measurement of multi-objective energy planning model dealing with uncertainties," Applied Energy, Elsevier, vol. 313(C).
    9. Liu, Jicheng & Lu, Yunyuan, 2023. "A task matching model of photovoltaic storage system under the energy blockchain environment - based on GA-CLOUD-GS algorithm," Energy, Elsevier, vol. 283(C).
    10. Liu, Jing & Huang, Fubin & Wang, Zihan & Shuai, Chuanmin, 2021. "What is the anti-poverty effect of solar PV poverty alleviation projects? Evidence from rural China," Energy, Elsevier, vol. 218(C).
    11. Minli Yu & Fu-Sheng Tsai & Hui Jin & Hejie Zhang, 2022. "Digital finance and renewable energy consumption: evidence from China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
    12. Wang, Jiexin & Wang, Song, 2023. "The effect of electricity market reform on energy efficiency in China," Energy Policy, Elsevier, vol. 181(C).
    13. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    14. Yu, Bolin & Fang, Debin & Yu, Hongwei & Zhao, Chaoyang, 2021. "Temporal-spatial determinants of renewable energy penetration in electricity production: Evidence from EU countries," Renewable Energy, Elsevier, vol. 180(C), pages 438-451.
    15. Xu, Bin, 2023. "Exploring the sustainable growth pathway of wind power in China: Using the semiparametric regression model," Energy Policy, Elsevier, vol. 183(C).
    16. Wang, Zihan & Li, Jiaxin & Liu, Jing & Shuai, Chuanmin, 2020. "Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? ——A DEA and GRA analysis of different projects in rural China," Energy Policy, Elsevier, vol. 137(C).
    17. Hu, Xing & Guo, Yingying & Zheng, Yali & Liu, Lan-cui & Yu, Shiwei, 2022. "Which types of policies better promote the development of renewable energy? Evidence from China's provincial data," Renewable Energy, Elsevier, vol. 198(C), pages 1373-1382.
    18. LU Guanyu & TANAKA Kenta & ARIMURA Toshi H., 2023. "The Impacts of the Tokyo and Saitama ETSs on the Energy Efficiency Performance of Manufacturing Facilities," Discussion papers 23007, Research Institute of Economy, Trade and Industry (RIETI).
    19. Ji, Zhengsen & Niu, Dongxiao & Li, Wanying & Wu, Gengqi & Yang, Xiaolong & Sun, Lijie, 2022. "Improving the energy efficiency of China: An analysis considering clean energy and fossil energy resources," Energy, Elsevier, vol. 259(C).
    20. Shi, Xiaohui & Chu, Junhui & Zhao, Changyi, 2021. "Exploring the spatiotemporal evolution of energy intensity in China by visual technology of the GIS," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.