IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p566-d96430.html
   My bibliography  Save this article

Optimal Energy Scheduling and Transaction Mechanism for Multiple Microgrids

Author

Listed:
  • Boram Kim

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Korea)

  • Sunghwan Bae

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Korea)

  • Hongseok Kim

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Korea)

Abstract

In this paper, we propose a framework for optimal energy scheduling combined with a transaction mechanism to enable multiple microgrids to exchange their energy surplus/deficit with others while the distributed networks of microgrids remain secure. Our framework is based on two layers: a distributed network layer and a market layer. In the distributed network layer, we first solve optimal power flow (OPF) using a predictor corrector proximal multiplier algorithm to optimally dispatch diesel generation considering renewable energy and power loss within a microgrid. Then, in the market layer, the agent of microgrid behaves either as a load agent or generator agent so that the auctioneer sets a reasonable transaction price for both agents by using the naive auction-inspired algorithm. Finally, energy surplus/deficit is traded among microgrids at a determined transaction price while the main grid balances the transaction. We implement the proposed mechanism in MATLAB (Matlab Release 15, The MathWorks Inc., Natick, MA, USA) using an optimization solver, CVX. In the case studies, we compare four scenarios depending on whether OPF and/or energy transaction is performed or not. Our results show that the joint consideration of OPF and energy transaction achieves as minimal a cost as the ideal case where all microgrids are combined into a single microgrid (or called grand-microgrid) and OPF is performed. We confirm that, even though microgrids are operated by private owners who are not collaborated, a transaction-based mechanism can mimic the optimal operation of a grand-microgrid in a scalable way.

Suggested Citation

  • Boram Kim & Sunghwan Bae & Hongseok Kim, 2017. "Optimal Energy Scheduling and Transaction Mechanism for Multiple Microgrids," Energies, MDPI, vol. 10(4), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:566-:d:96430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yohwan Choi & Hongseok Kim, 2016. "Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost," Energies, MDPI, vol. 9(6), pages 1-19, June.
    2. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    3. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim, 2016. "Optimal Electric and Heat Energy Management of Multi-Microgrids with Sequentially-Coordinated Operations," Energies, MDPI, vol. 9(6), pages 1-18, June.
    4. Siyoung Lee & Younggyu Jin & Gilsoo Jang & Yongtae Yoon, 2016. "Optimal Bidding of a Microgrid Based on Probabilistic Analysis of Island Operation," Energies, MDPI, vol. 9(10), pages 1-14, October.
    5. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    6. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Namhyun Ahn & So Yeon Jo & Suk-Ju Kang, 2019. "Constraint-Aware Electricity Consumption Estimation for Prevention of Overload by Electric Vehicle Charging Station," Energies, MDPI, vol. 12(6), pages 1-18, March.
    2. Seongwoo Lee & Joonho Seon & Chanuk Kyeong & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2021. "Novel Energy Trading System Based on Deep-Reinforcement Learning in Microgrids," Energies, MDPI, vol. 14(17), pages 1-14, September.
    3. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    4. Yerasyl Amanbek & Aidana Kalakova & Svetlana Zhakiyeva & Korhan Kayisli & Nurkhat Zhakiyev & Daniel Friedrich, 2022. "Distribution Locational Marginal Price Based Transactive Energy Management in Distribution Systems with Smart Prosumers—A Multi-Agent Approach," Energies, MDPI, vol. 15(7), pages 1-18, March.
    5. Zahid Ullah & Arshad & Jawad Ahmad, 2022. "The Development of a Cross-Border Energy Trade Cooperation Model of Interconnected Virtual Power Plants Using Bilateral Contracts," Energies, MDPI, vol. 15(21), pages 1-16, November.
    6. Gyeong Ho Lee & Junghyun Lee & Seong Gon Choi & Jangkyum Kim, 2024. "Optimal Community Energy Storage System Operation in a Multi-Power Consumer System: A Stackelberg Game Theory Approach," Energies, MDPI, vol. 17(22), pages 1-16, November.
    7. Hong-Chao Gao & Joon-Ho Choi & Sang-Yun Yun & Seon-Ju Ahn, 2020. "A New Power Sharing Scheme of Multiple Microgrids and an Iterative Pairing-Based Scheduling Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    8. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Se-Hyeok Choi & Akhtar Hussain & Hak-Man Kim, 2018. "Adaptive Robust Optimization-Based Optimal Operation of Microgrids Considering Uncertainties in Arrival and Departure Times of Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-16, October.
    2. Hyeong-Jun Yoo & Thai-Thanh Nguyen & Hak-Man Kim, 2017. "Multi-Frequency Control in a Stand-Alone Multi-Microgrid System Using a Back-To-Back Converter," Energies, MDPI, vol. 10(6), pages 1-18, June.
    3. Zhenya Ji & Xueliang Huang & Changfu Xu & Houtao Sun, 2016. "Accelerated Model Predictive Control for Electric Vehicle Integrated Microgrid Energy Management: A Hybrid Robust and Stochastic Approach," Energies, MDPI, vol. 9(11), pages 1-18, November.
    4. Luis Galván & Juan M. Navarro & Eduardo Galván & Juan M. Carrasco & Andrés Alcántara, 2019. "Optimal Scheduling of Energy Storage Using A New Priority-Based Smart Grid Control Method," Energies, MDPI, vol. 12(4), pages 1-17, February.
    5. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim & Yong-Hoon Im & Jae-Yong Lee, 2017. "Optimal Energy Management of Combined Cooling, Heat and Power in Different Demand Type Buildings Considering Seasonal Demand Variations," Energies, MDPI, vol. 10(6), pages 1-21, June.
    6. Craparo, Emily & Karatas, Mumtaz & Singham, Dashi I., 2017. "A robust optimization approach to hybrid microgrid operation using ensemble weather forecasts," Applied Energy, Elsevier, vol. 201(C), pages 135-147.
    7. Jangkyum Kim & Yohwan Choi & Seunghyoung Ryu & Hongseok Kim, 2017. "Robust Operation of Energy Storage System with Uncertain Load Profiles," Energies, MDPI, vol. 10(4), pages 1-15, March.
    8. Vahid Amir & Shahram Jadid & Mehdi Ehsan, 2017. "Probabilistic Optimal Power Dispatch in Multi-Carrier Networked Microgrids under Uncertainties," Energies, MDPI, vol. 10(11), pages 1-21, November.
    9. Hojin Kim & Jaewoo So & Hongseok Kim, 2022. "Carbon-Neutral Cellular Network Operation Based on Deep Reinforcement Learning," Energies, MDPI, vol. 15(12), pages 1-13, June.
    10. Kim, Minsoo & Park, Taeseop & Jeong, Jaeik & Kim, Hongseok, 2023. "Stochastic optimization of home energy management system using clustered quantile scenario reduction," Applied Energy, Elsevier, vol. 349(C).
    11. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    12. Jungsub Sim & Minsoo Kim & Dongjoo Kim & Hongseok Kim, 2021. "Cloud Energy Storage System Operation with Capacity P2P Transaction," Energies, MDPI, vol. 14(2), pages 1-13, January.
    13. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    14. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    15. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    16. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    17. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    18. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    19. Thiaux, Yaël & Dang, Thu Thuy & Schmerber, Louis & Multon, Bernard & Ben Ahmed, Hamid & Bacha, Seddik & Tran, Quoc Tuan, 2019. "Demand-side management strategy in stand-alone hybrid photovoltaic systems with real-time simulation of stochastic electricity consumption behavior," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:566-:d:96430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.