IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p561-d96272.html
   My bibliography  Save this article

Methane Hydrate Formation in Marine Sediment from South China Sea with Different Water Saturations

Author

Listed:
  • Yu Zhang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Xiaosen Li

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Yi Wang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Zhaoyang Chen

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Gang Li

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract

The kinetics of methane hydrate formation in marine sediments with different water saturations are important to assess the feasibility of the hydrate production and understand the process of the secondary hydrate formation in the gas production from hydrate reservoir. In this paper, the behaviors of methane hydrate formation in marine sediments from the South China Sea at different water saturation levels were experimentally studied in isobaric conditions. The marine sediments used in the experiments have the mean pore diameter of 12.178 nm, total pore volume of 4.997 × 10 −2 mL/g and surface area of 16.412 m 2 /g. The volume fraction of water in the marine sediments ranges from 30% to 50%. The hydrate formation rate and the final water conversion increase with the decrease of the formation temperature at the water saturation of 40%. At the same experimental conditions, the hydrate formation rate decreases with the increase of the water saturation from 40% to 50% due to the reduction of the gas diffusion speed. At the water saturation of 30%, the hydrate formation rate is lower than that at the water saturation of 40% due to the effect of the equilibrium hydrate formation pressure, which increases with the decrease of the water saturation. The final water conversion is shown to increase with the increase of the water saturation, even the formation process at higher water did not end. The experiments at low water saturation show a better repeatability than that at high water saturation.

Suggested Citation

  • Yu Zhang & Xiaosen Li & Yi Wang & Zhaoyang Chen & Gang Li, 2017. "Methane Hydrate Formation in Marine Sediment from South China Sea with Different Water Saturations," Energies, MDPI, vol. 10(4), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:561-:d:96272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gang Li & Xiao-Sen Li & Keni Zhang & Bo Li & Yu Zhang, 2013. "Effects of Impermeable Boundaries on Gas Production from Hydrate Accumulations in the Shenhu Area of the South China Sea," Energies, MDPI, vol. 6(8), pages 1-19, August.
    2. Peng Zhang & Qingbai Wu & Yuzhong Yang, 2013. "Characteristics of Methane Hydrate Formation in Artificial and Natural Media," Energies, MDPI, vol. 6(3), pages 1-17, March.
    3. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yu & Li, Xiao-Sen & Chen, Zhao-Yang & Xia, Zhi-Ming & Wang, Yi & Li, Gang, 2018. "Experimental and modeling study on controlling factor of methane hydrate formation in silica gels," Applied Energy, Elsevier, vol. 225(C), pages 827-834.
    2. Yulia Zaripova & Vladimir Yarkovoi & Mikhail Varfolomeev & Rail Kadyrov & Andrey Stoporev, 2021. "Influence of Water Saturation, Grain Size of Quartz Sand and Hydrate-Former on the Gas Hydrate Formation," Energies, MDPI, vol. 14(5), pages 1-15, February.
    3. Peng Li & Xuhui Zhang & Xiaobing Lu, 2018. "Dissociation Behaviors of CO 2 Hydrate-Bearing Sediment Particle during Settling in Water," Energies, MDPI, vol. 11(11), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    2. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    3. Kan, Jing-Yu & Sun, Yi-Fei & Dong, Bao-Can & Yuan, Qing & Liu, Bei & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "Numerical simulation of gas production from permafrost hydrate deposits enhanced with CO2/N2 injection," Energy, Elsevier, vol. 221(C).
    4. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer," Energy, Elsevier, vol. 239(PC).
    6. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    7. Wan, Kun & Wu, Tian-Wei & Wang, Yi & Li, Xiao-Sen & Liu, Jian-Wu & Kou, Xuan & Feng, Jing-Chun, 2023. "Large-scale experimental study of heterogeneity in different types of hydrate reservoirs by horizontal well depressurization method," Applied Energy, Elsevier, vol. 332(C).
    8. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    9. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    10. Hyo-Jin Kim & Su-Mi Han & Seung-Hoon Yoo, 2018. "Measuring the Economic Benefits of Industrial Natural Gas Use in South Korea," Sustainability, MDPI, vol. 10(7), pages 1-10, June.
    11. Hengjie Luan & Mingkang Liu & Qinglin Shan & Yujing Jiang & Peng Yan & Xiaoyu Du, 2024. "Experimental Study on the Effect of Mixed Thermodynamic Inhibitors with Different Concentrations on Natural Gas Hydrate Synthesis," Energies, MDPI, vol. 17(9), pages 1-16, April.
    12. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    13. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    14. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    15. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    16. Liu, Yongge & Hou, Jian & Chen, Zhangxin & Bai, Yajie & Su, Haiyang & Zhao, Ermeng & Li, Guangming, 2021. "Enhancing hot water flooding in hydrate bearing layers through a novel staged production method," Energy, Elsevier, vol. 217(C).
    17. Kou, Xuan & Zhang, Heng & Li, Xiao-Sen & Chen, Zhao-Yang & Wang, Yi, 2024. "Methane hydrate phase transition in marine clayey sediments: Enhanced structure change and solid migration," Applied Energy, Elsevier, vol. 368(C).
    18. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    19. Wang, Xiaochu & Sun, Youhong & Li, Bing & Zhang, Guobiao & Guo, Wei & Li, Shengli & Jiang, Shuhui & Peng, Saiyu & Chen, Hangkai, 2023. "Reservoir stimulation of marine natural gas hydrate-a review," Energy, Elsevier, vol. 263(PE).
    20. Wan, Kun & Wang, Yi & Li, Xiao-Sen & Zhang, Long-Hai & Meng, Te, 2024. "Pilot-scale experimental study on natural gas hydrate decomposition with innovation depressurization modes," Applied Energy, Elsevier, vol. 373(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:561-:d:96272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.