IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p180-d89437.html
   My bibliography  Save this article

Risk-Based Probabilistic Voltage Stability Assessment in Uncertain Power System

Author

Listed:
  • Weisi Deng

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China)

  • Buhan Zhang

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China)

  • Hongfa Ding

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China)

  • Hang Li

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China)

Abstract

The risk-based assessment is a new approach to the voltage stability assessment in power systems. Under several uncertainties, the security risk of static voltage stability with the consideration of wind power can be evaluated. In this paper, we first build a probabilistic forecast model for wind power generation based on real historical data. Furthermore, we propose a new probability voltage stability approach based on Conditional Value-at-Risk (CVaR) and Quasi-Monte Carlo (QMC) simulation. The QMC simulation is used to speed up Monte Carlo (MC) simulation by improving the sampling technique. Our CVaR-based model reveals critical characteristics of static voltage stability. The distribution of the local voltage stability margin, which considers the security risk at a forecast operating time interval, is estimated to evaluate the probability voltage stability. Tested on the modified IEEE New England 39-bus system and the IEEE 118-bus system, results from the proposal are compared against the result of the conventional proposal. The effectiveness and advantages of the proposed method are demonstrated by the test results.

Suggested Citation

  • Weisi Deng & Buhan Zhang & Hongfa Ding & Hang Li, 2017. "Risk-Based Probabilistic Voltage Stability Assessment in Uncertain Power System," Energies, MDPI, vol. 10(2), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:180-:d:89437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van der Veen, Reinier A.C. & Abbasy, Alireza & Hakvoort, Rudi A., 2012. "Agent-based analysis of the impact of the imbalance pricing mechanism on market behavior in electricity balancing markets," Energy Economics, Elsevier, vol. 34(4), pages 874-881.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Rambabu & G. V. Nagesh Kumar & S. Sivanagaraju, 2019. "Optimal Power Flow of Integrated Renewable Energy System using a Thyristor Controlled SeriesCompensator and a Grey-Wolf Algorithm," Energies, MDPI, vol. 12(11), pages 1-18, June.
    2. Heng-Yi Su & Tzu-Yi Liu, 2017. "A PMU-Based Method for Smart Transmission Grid Voltage Security Visualization and Monitoring," Energies, MDPI, vol. 10(8), pages 1-16, July.
    3. Ali M. Hakami & Kazi N. Hasan & Mohammed Alzubaidi & Manoj Datta, 2022. "A Review of Uncertainty Modelling Techniques for Probabilistic Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 16(1), pages 1-26, December.
    4. Mohammed Alzubaidi & Kazi N. Hasan & Lasantha Meegahapola & Mir Toufikur Rahman, 2021. "Identification of Efficient Sampling Techniques for Probabilistic Voltage Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 14(8), pages 1-15, April.
    5. Qi Wang & Dasong Sun & Jianxiong Hu & Yi Wu & Ji Zhou & Yi Tang, 2019. "Risk Assessment Method for Integrated Transmission–Distribution System Considering the Reactive Power Regulation Capability of DGs," Energies, MDPI, vol. 12(16), pages 1-14, August.
    6. Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium," EconStor Preprints 233852, ZBW - Leibniz Information Centre for Economics.
    2. Derek W. Bunn & Stefan O.E. Kermer, 2021. "Statistical Arbitrage and Information Flow in an Electricity Balancing Market," The Energy Journal, , vol. 42(5), pages 19-40, September.
    3. Marc Deissenroth & Martin Klein & Kristina Nienhaus & Matthias Reeg, 2017. "Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration," Complexity, Hindawi, vol. 2017, pages 1-24, December.
    4. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    5. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    6. Koch, Christopher & Hirth, Lion, 2019. "Short-term electricity trading for system balancing: An empirical analysis of the role of intraday trading in balancing Germany's electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Chaves-Ávila, José Pablo & van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2014. "The interplay between imbalance pricing mechanisms and network congestions – Analysis of the German electricity market," Utilities Policy, Elsevier, vol. 28(C), pages 52-61.
    8. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    9. Maria Laura Victoria Marques & Ronaldo Seroa da Motta & Daniel de Abreu Pereira Uhr & Julia Ziero Uhr, 2024. "45 Years of Publications in Energy Economics: Evolution and Thematic Trends," Papers 2407.05974, arXiv.org.
    10. Gro Klaeboe & Anders Lund Eriksrud & Stein-Erik Fleten, 2013. "Benchmarking time series based forecasting models for electricity balancing market prices," Working Papers 2013-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    11. Brijs, Tom & De Vos, Kristof & De Jonghe, Cedric & Belmans, Ronnie, 2015. "Statistical analysis of negative prices in European balancing markets," Renewable Energy, Elsevier, vol. 80(C), pages 53-60.
    12. Khojasteh, Meysam & Faria, Pedro & Lezama, Fernando & Vale, Zita, 2023. "A hierarchy model to use local resources by DSO and TSO in the balancing market," Energy, Elsevier, vol. 267(C).
    13. Meysam Khojasteh & Pedro Faria & Fernando Lezama & Zita Vale, 2023. "A Robust Model for Portfolio Management of Microgrid Operator in the Balancing Market," Energies, MDPI, vol. 16(4), pages 1-12, February.
    14. Feng, Wenxiu, 2024. "Predictive day-ahead offering for renewable generators in uncertain spot and balancing markets," DES - Working Papers. Statistics and Econometrics. WS 44216, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Gro Klæboe & Jørgen Braathen & Anders Lund Eriksrud & Stein-Erik Fleten, 2022. "Day-ahead market bidding taking the balancing power market into account," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 683-703, October.
    16. Glismann, Samuel, 2021. "Ancillary Services Acquisition Model: Considering market interactions in policy design," Applied Energy, Elsevier, vol. 304(C).
    17. van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2016. "The electricity balancing market: Exploring the design challenge," Utilities Policy, Elsevier, vol. 43(PB), pages 186-194.
    18. Frade, P.M.S. & Santana, J.J.E. & Shafie-khah, M. & Catalão, J.P.S., 2018. "Impact of tertiary reserve sharing in Portugal," Utilities Policy, Elsevier, vol. 55(C), pages 167-177.
    19. Liu, Tingting & Xu, Jiuping, 2021. "Equilibrium strategy based policy shifts towards the integration of wind power in spot electricity markets: A perspective from China," Energy Policy, Elsevier, vol. 157(C).
    20. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium: An instrument-based estimation of supply and demand for imbalance energy," Energy Economics, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:180-:d:89437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.