IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2161-d123413.html
   My bibliography  Save this article

Battery Storage Systems as Grid-Balancing Measure in Low-Voltage Distribution Grids with Distributed Generation

Author

Listed:
  • Bernhard Faessler

    (Josef Ressel Center for Applied Scientific Computing in Energy, Finance, and Logistics, Vorarlberg University of Applied Sciences, Hochschulstrasse 1, 6850 Dornbirn, Austria
    Illwerke vkw Endowed Professorship for Energy Efficiency, Energy Research Center, Vorarlberg University of Applied Sciences, Hochschulstrasse 1, 6850 Dornbirn, Austria
    Faculty of Engineering and Science, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway)

  • Michael Schuler

    (Josef Ressel Center for Applied Scientific Computing in Energy, Finance, and Logistics, Vorarlberg University of Applied Sciences, Hochschulstrasse 1, 6850 Dornbirn, Austria)

  • Markus Preißinger

    (Illwerke vkw Endowed Professorship for Energy Efficiency, Energy Research Center, Vorarlberg University of Applied Sciences, Hochschulstrasse 1, 6850 Dornbirn, Austria)

  • Peter Kepplinger

    (Josef Ressel Center for Applied Scientific Computing in Energy, Finance, and Logistics, Vorarlberg University of Applied Sciences, Hochschulstrasse 1, 6850 Dornbirn, Austria
    Illwerke vkw Endowed Professorship for Energy Efficiency, Energy Research Center, Vorarlberg University of Applied Sciences, Hochschulstrasse 1, 6850 Dornbirn, Austria)

Abstract

Due to the promoted integration of renewable sources, a further growth of strongly transient, distributed generation is expected. Thus, the existing electrical grid may reach its physical limits. To counteract this, and to fully exploit the viable potential of renewables, grid-balancing measures are crucial. In this work, battery storage systems are embedded in a grid simulation to evaluate their potential for grid balancing. The overall setup is based on a real, low-voltage distribution grid topology, real smart meter household load profiles, and real photovoltaics load data. An autonomous optimization routine, driven by a one-way communicated incentive, determines the prospective battery operation mode. Different battery positions and incentives are compared to evaluate their impact. The configurations incorporate a baseline simulation without storage, a single, central battery storage or multiple, distributed battery storages which together have the same power and capacity. The incentives address either market conditions, grid balancing, optimal photovoltaic utilization, load shifting, or self-consumption. Simulations show that grid-balancing incentives result in lowest peak-to-average power ratios, while maintaining negligible voltage changes in comparison to a reference case. Incentives reflecting market conditions for electricity generation, such as real-time pricing, negatively influence the power quality, especially with respect to the peak-to-average power ratio. A central, feed-in-tied storage performs better in terms of minimizing the voltage drop/rise and shows lower distribution losses, while distributed storages attached at nodes with electricity generation by photovoltaics achieve lower peak-to-average power ratios.

Suggested Citation

  • Bernhard Faessler & Michael Schuler & Markus Preißinger & Peter Kepplinger, 2017. "Battery Storage Systems as Grid-Balancing Measure in Low-Voltage Distribution Grids with Distributed Generation," Energies, MDPI, vol. 10(12), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2161-:d:123413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    2. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    3. Paatero, Jukka V. & Lund, Peter D., 2007. "Effects of large-scale photovoltaic power integration on electricity distribution networks," Renewable Energy, Elsevier, vol. 32(2), pages 216-234.
    4. Azhar Ul-Haq & Carlo Cecati & Essam A. Al-Ammar, 2016. "Modeling of a Photovoltaic-Powered Electric Vehicle Charging Station with Vehicle-to-Grid Implementation," Energies, MDPI, vol. 10(1), pages 1-20, December.
    5. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    6. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    7. Faessler, B. & Kepplinger, P. & Petrasch, J., 2017. "Decentralized price-driven grid balancing via repurposed electric vehicle batteries," Energy, Elsevier, vol. 118(C), pages 446-455.
    8. Weige Zhang & Di Zhang & Biqiang Mu & Le Yi Wang & Yan Bao & Jiuchun Jiang & Hugo Morais, 2017. "Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids," Energies, MDPI, vol. 10(2), pages 1-19, January.
    9. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    10. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
    11. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    2. Dimitar Bozalakov & Mohannad J. Mnati & Joannes Laveyne & Jan Desmet & Lieven Vandevelde, 2019. "Battery Storage Integration in Voltage Unbalance and Overvoltage Mitigation Control Strategies and Its Impact on the Power Quality," Energies, MDPI, vol. 12(8), pages 1-26, April.
    3. Evgeny Lisin & Galina Kurdiukova & Pavel Okley & Veronika Chernova, 2019. "Efficient Methods of Market Pricing in Power Industry within the Context of System Integration of Renewable Energy Sources," Energies, MDPI, vol. 12(17), pages 1-16, August.
    4. Reimuth, Andrea & Prasch, Monika & Locherer, Veronika & Danner, Martin & Mauser, Wolfram, 2019. "Influence of different battery charging strategies on residual grid power flows and self-consumption rates at regional scale," Applied Energy, Elsevier, vol. 238(C), pages 572-581.
    5. Ahmed Alzahrani & Hussain Alharthi & Muhammad Khalid, 2019. "Minimization of Power Losses through Optimal Battery Placement in a Distributed Network with High Penetration of Photovoltaics," Energies, MDPI, vol. 13(1), pages 1-16, December.
    6. Salvatore Favuzza & Mariano Giuseppe Ippolito & Fabio Massaro & Rossano Musca & Eleonora Riva Sanseverino & Giuseppe Schillaci & Gaetano Zizzo, 2018. "Building Automation and Control Systems and Electrical Distribution Grids: A Study on the Effects of Loads Control Logics on Power Losses and Peaks," Energies, MDPI, vol. 11(3), pages 1-15, March.
    7. Weckesser, Tilman & Dominković, Dominik Franjo & Blomgren, Emma M.V. & Schledorn, Amos & Madsen, Henrik, 2021. "Renewable Energy Communities: Optimal sizing and distribution grid impact of photo-voltaics and battery storage," Applied Energy, Elsevier, vol. 301(C).
    8. João Martins & Sergiu Spataru & Dezso Sera & Daniel-Ioan Stroe & Abderezak Lashab, 2019. "Comparative Study of Ramp-Rate Control Algorithms for PV with Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-15, April.
    9. Haider, Sajjad & Rizvi, Rida e Zahra & Walewski, John & Schegner, Peter, 2022. "Investigating peer-to-peer power transactions for reducing EV induced network congestion," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    2. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    3. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    4. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    5. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    6. Roos, Aleksandra & Bolkesjø, Torjus Folsland, 2018. "Value of demand flexibility on spot and reserve electricity markets in future power system with increased shares of variable renewable energy," Energy, Elsevier, vol. 144(C), pages 207-217.
    7. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    8. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    9. Summerbell, Daniel L. & Khripko, Diana & Barlow, Claire & Hesselbach, Jens, 2017. "Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant," Applied Energy, Elsevier, vol. 197(C), pages 100-113.
    10. Thibaut Th'eate & Antonio Sutera & Damien Ernst, 2023. "Matching of Everyday Power Supply and Demand with Dynamic Pricing: Problem Formalisation and Conceptual Analysis," Papers 2301.11587, arXiv.org.
    11. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    12. Soares, Ana & Antunes, Carlos Henggeler & Oliveira, Carlos & Gomes, Álvaro, 2014. "A multi-objective genetic approach to domestic load scheduling in an energy management system," Energy, Elsevier, vol. 77(C), pages 144-152.
    13. Wei, Min & Hong, Seung Ho & Alam, Musharraf, 2016. "An IoT-based energy-management platform for industrial facilities," Applied Energy, Elsevier, vol. 164(C), pages 607-619.
    14. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    15. Sarker, Eity & Seyedmahmoudian, Mehdi & Jamei, Elmira & Horan, Ben & Stojcevski, Alex, 2020. "Optimal management of home loads with renewable energy integration and demand response strategy," Energy, Elsevier, vol. 210(C).
    16. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    17. Nezamoddini, Nasim & Wang, Yong, 2017. "Real-time electricity pricing for industrial customers: Survey and case studies in the United States," Applied Energy, Elsevier, vol. 195(C), pages 1023-1037.
    18. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    19. Faessler, B. & Kepplinger, P. & Petrasch, J., 2017. "Decentralized price-driven grid balancing via repurposed electric vehicle batteries," Energy, Elsevier, vol. 118(C), pages 446-455.
    20. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2161-:d:123413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.