IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1998-d121194.html
   My bibliography  Save this article

A New Prediction Model for Transformer Winding Hotspot Temperature Fluctuation Based on Fuzzy Information Granulation and an Optimized Wavelet Neural Network

Author

Listed:
  • Li Zhang

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Wenfang Zhang

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Jinxin Liu

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Tong Zhao

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Liang Zou

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Xinghua Wang

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

Abstract

Winding hotspot temperature is the key factor affecting the load capacity and service life of transformers. For the early detection of transformer winding hotspot temperature anomalies, a new prediction model for the hotspot temperature fluctuation range based on fuzzy information granulation (FIG) and the chaotic particle swarm optimized wavelet neural network (CPSO-WNN) is proposed in this paper. The raw data are firstly processed by FIG to extract useful information from each time window. The extracted information is then used to construct a wavelet neural network (WNN) prediction model. Furthermore, the structural parameters of WNN are optimized by chaotic particle swarm optimization (CPSO) before it is used to predict the fluctuation range of the hotspot temperature. By analyzing the experimental data with four different prediction models, we find that the proposed method is more effective and is of guiding significance for the operation and maintenance of transformers.

Suggested Citation

  • Li Zhang & Wenfang Zhang & Jinxin Liu & Tong Zhao & Liang Zou & Xinghua Wang, 2017. "A New Prediction Model for Transformer Winding Hotspot Temperature Fluctuation Based on Fuzzy Information Granulation and an Optimized Wavelet Neural Network," Energies, MDPI, vol. 10(12), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1998-:d:121194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nima Amjady & Farshid Keynia, 2011. "A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems," Energies, MDPI, vol. 4(3), pages 1-16, March.
    2. Zeyu Chen & Rui Xiong & Kunyu Wang & Bin Jiao, 2015. "Optimal Energy Management Strategy of a Plug-in Hybrid Electric Vehicle Based on a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 8(5), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaomu Duan & Tong Zhao & Jinxin Liu & Li Zhang & Liang Zou, 2018. "Analysis of Winding Vibration Characteristics of Power Transformers Based on the Finite-Element Method," Energies, MDPI, vol. 11(9), pages 1-19, September.
    2. Haonan Tian & Zhongbao Wei & Sriram Vaisambhayana & Madasamy Thevar & Anshuman Tripathi & Philip Kjær, 2019. "A Coupled, Semi-Numerical Model for Thermal Analysis of Medium Frequency Transformer," Energies, MDPI, vol. 12(2), pages 1-16, January.
    3. Chun-feng Xia & Jiang Wu & Wei Wang, 2022. "Design and Study of Mountaineering Wear Based on Nano Antibacterial Technology and Prediction Model," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 17(1), pages 1-16, January.
    4. Sen Zheng & Chongshi Gu & Chenfei Shao & Yating Hu & Yanxin Xu & Xiaoyu Huang, 2023. "A Novel Prediction Model for Seawall Deformation Based on CPSO-WNN-LSTM," Mathematics, MDPI, vol. 11(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    2. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
    4. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
    5. Hsiu-Ying Hwang & Jia-Shiun Chen, 2020. "Optimized Fuel Economy Control of Power-Split Hybrid Electric Vehicle with Particle Swarm Optimization," Energies, MDPI, vol. 13(9), pages 1-18, May.
    6. Yea-Kuang Chan & Jyh-Cherng Gu, 2012. "Modeling of Turbine Cycles Using a Neuro-Fuzzy Based Approach to Predict Turbine-Generator Output for Nuclear Power Plants," Energies, MDPI, vol. 5(1), pages 1-18, January.
    7. Benmouna, Amel & Becherif, Mohamed & Depernet, Daniel & Ebrahim, Mohamed A., 2018. "Novel Energy Management Technique for Hybrid Electric Vehicle via Interconnection and Damping Assignment Passivity Based Control," Renewable Energy, Elsevier, vol. 119(C), pages 116-128.
    8. Ming Meng & Dongxiao Niu & Wei Sun, 2011. "Forecasting Monthly Electric Energy Consumption Using Feature Extraction," Energies, MDPI, vol. 4(10), pages 1-13, September.
    9. Ons Sassi & Ammar Oulamara, 2017. "Electric vehicle scheduling and optimal charging problem: complexity, exact and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 519-535, January.
    10. Konrad Prajwowski & Wawrzyniec Golebiewski & Maciej Lisowski & Karol F. Abramek & Dominik Galdynski, 2020. "Modeling of Working Machines Synergy in the Process of the Hybrid Electric Vehicle Acceleration," Energies, MDPI, vol. 13(21), pages 1-20, November.
    11. Cheng-Ming Lee & Chia-Nan Ko, 2016. "Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network," Energies, MDPI, vol. 9(12), pages 1-15, November.
    12. Jingxian Hao & Zhuoping Yu & Zhiguo Zhao & Peihong Shen & Xiaowen Zhan, 2016. "Optimization of Key Parameters of Energy Management Strategy for Hybrid Electric Vehicle Using DIRECT Algorithm," Energies, MDPI, vol. 9(12), pages 1-24, November.
    13. Samuel Atuahene & Yukun Bao & Patricia Semwaah Gyan & Yao Yevenyo Ziggah, 2019. "Accurate Forecast Improvement Approach for Short Term Load Forecasting Using Hybrid Filter-Wrap Feature Selection," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 5(2), pages 37-49, January.
    14. Li, Shuangqi & He, Hongwen & Zhao, Pengfei, 2021. "Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system perspective," Energy, Elsevier, vol. 230(C).
    15. Feras Alasali & Husam Foudeh & Esraa Mousa Ali & Khaled Nusair & William Holderbaum, 2021. "Forecasting and Modelling the Uncertainty of Low Voltage Network Demand and the Effect of Renewable Energy Sources," Energies, MDPI, vol. 14(8), pages 1-31, April.
    16. Dieudonné, Nzoko Tayo & Armel, Talla Konchou Franck & Hermann, Djeudjo Temene & Vidal, Aloyem Kaze Claude & René, Tchinda, 2023. "Optimization of Short-Term Forecast of Electric Power Demand in the city of Yaoundé-Cameroon by a hybrid model based on the combination of neural networks and econometric methods from a designed energ," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    17. Chan-Uk Yeom & Keun-Chang Kwak, 2017. "Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge Representation," Energies, MDPI, vol. 10(10), pages 1-18, October.
    18. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
    19. Lihe Xi & Xin Zhang & Chuanyang Sun & Zexing Wang & Xiaosen Hou & Jibao Zhang, 2017. "Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network," Energies, MDPI, vol. 10(11), pages 1-18, November.
    20. Mosquera-López, Stephanía & Uribe, Jorge M. & Manotas-Duque, Diego Fernando, 2017. "Nonlinear empirical pricing in electricity markets using fundamental weather factors," Energy, Elsevier, vol. 139(C), pages 594-605.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1998-:d:121194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.