IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1983-d121281.html
   My bibliography  Save this article

Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

Author

Listed:
  • Jae-Han Lim

    (ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Korea)

  • Yoon-Sun Lee

    (ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Korea)

  • Yoon-Bok Seong

    (Center for Climatic Environment Real-scale Testing, Korea Conformity Laboratories, Chungbuk 27873, Korea)

Abstract

The electric power generation efficiency of photovoltaic (PV) panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs) to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM) methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

Suggested Citation

  • Jae-Han Lim & Yoon-Sun Lee & Yoon-Bok Seong, 2017. "Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions," Energies, MDPI, vol. 10(12), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1983-:d:121281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuli Setyo Indartono & Aryadi Suwono & Fendy Yuseva Pratama, 2016. "Improving photovoltaics performance by using yellow petroleum jelly as phase change material," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 333-337.
    2. Tonui, J.K. & Tripanagnostopoulos, Y., 2007. "Improved PV/T solar collectors with heat extraction by forced or natural air circulation," Renewable Energy, Elsevier, vol. 32(4), pages 623-637.
    3. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    4. Ahmad Hasan & Sarah Josephine McCormack & Ming Jun Huang & Brian Norton, 2014. "Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics," Energies, MDPI, vol. 7(3), pages 1-14, March.
    5. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Govindasamy, Dhanusiya & Kumar, Ashwani, 2023. "Experimental analysis of solar panel efficiency improvement with composite phase change materials," Renewable Energy, Elsevier, vol. 212(C), pages 175-184.
    2. Prasannaa Poongavanam & Aneesh A. Chand & Van Ba Tai & Yash Munnalal Gupta & Madhan Kuppusamy & Joshuva Arockia Dhanraj & Karthikeyan Velmurugan & Rajasekar Rajagopal & Tholkappiyan Ramachandran & Kus, 2023. "Annual Thermal Management of the Photovoltaic Module to Enhance Electrical Power and Efficiency Using Heat Batteries," Energies, MDPI, vol. 16(10), pages 1-18, May.
    3. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    2. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    3. Ahmad Hasan & Hamza Alnoman & Ali Hasan Shah, 2016. "Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery," Energies, MDPI, vol. 9(10), pages 1-15, September.
    4. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    5. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    6. Erdil, Erzat & Ilkan, Mustafa & Egelioglu, Fuat, 2008. "An experimental study on energy generation with a photovoltaic (PV)–solar thermal hybrid system," Energy, Elsevier, vol. 33(8), pages 1241-1245.
    7. Hamed, Tareq Abu & Alshare, Aiman & El-Khalil, Hossam, 2019. "Passive cooling of building-integrated photovolatics in desert conditions: Experiment and modeling," Energy, Elsevier, vol. 170(C), pages 131-138.
    8. Choubineh, Negin & Jannesari, Hamid & Kasaeian, Alibakhsh, 2019. "Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 103-111.
    9. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    10. Khalid, Maria & Shanks, Katie & Ghosh, Aritra & Tahir, Asif & Sundaram, Senthilarasu & Mallick, Tapas Kumar, 2021. "Temperature regulation of concentrating photovoltaic window using argon gas and polymer dispersed liquid crystal films," Renewable Energy, Elsevier, vol. 164(C), pages 96-108.
    11. Dengchang Ma & Guobing Pan & Fang Xu & Hongfei Sun, 2021. "Quantitative Analysis of the Impact of Meteorological Environment on Photovoltaic System Feasibility," Energies, MDPI, vol. 14(10), pages 1-16, May.
    12. Abdollahi, Nasrin & Rahimi, Masoud, 2020. "Potential of water natural circulation coupled with nano-enhanced PCM for PV module cooling," Renewable Energy, Elsevier, vol. 147(P1), pages 302-309.
    13. Sharma, S. & Micheli, L. & Chang, W. & Tahir, A.A. & Reddy, K.S. & Mallick, T.K., 2017. "Nano-enhanced Phase Change Material for thermal management of BICPV," Applied Energy, Elsevier, vol. 208(C), pages 719-733.
    14. Ma, Tao & Yang, Hongxing & Zhang, Yinping & Lu, Lin & Wang, Xin, 2015. "Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1273-1284.
    15. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    16. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    17. Ahmad Hasan & Sarah Josephine McCormack & Ming Jun Huang & Brian Norton, 2014. "Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics," Energies, MDPI, vol. 7(3), pages 1-14, March.
    18. Assoa, Y.B. & Levrard, D., 2020. "A lightweight triangular building integrated photovoltaic module," Applied Energy, Elsevier, vol. 279(C).
    19. Daghigh, R. & Ruslan, M.H. & Sopian, K., 2011. "Advances in liquid based photovoltaic/thermal (PV/T) collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4156-4170.
    20. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1983-:d:121281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.