IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1910-d119653.html
   My bibliography  Save this article

Ground-Fault Characteristic Analysis of Grid-Connected Photovoltaic Stations with Neutral Grounding Resistance

Author

Listed:
  • Zheng Li

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering of Chongqing University, Shapingba District, Chongqing 400044, China)

  • Jiping Lu

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering of Chongqing University, Shapingba District, Chongqing 400044, China)

  • Ya Zhu

    (Maintenance Branch of Chongqing Electric Power Company of (State Grid), No. 12 Zhongshan Road, Yuzhong District, Chongqing 400015, China)

  • Wang Jiang

    (Electric Power Research Institute of Chongqing Electric Power Company of (State Grid), Chongqing 401120, China)

Abstract

A centralized grid-connected photovoltaic (PV) station is a widely adopted method of neutral grounding using resistance, which can potentially make pre-existing protection systems invalid and threaten the safety of power grids. Therefore, studying the fault characteristics of grid-connected PV systems and their impact on power-grid protection is of great importance. Based on an analysis of the grid structure of a grid-connected PV system and of the low-voltage ride-through control characteristics of a photovoltaic power supply, this paper proposes a short-circuit calculation model and a fault-calculation method for this kind of system. With respect to the change of system parameters, particularly the resistance connected to the neutral point, and the possible impact on protective actions, this paper achieves the general rule of short-circuit current characteristics through a simulation, which provides a reference for devising protection configurations.

Suggested Citation

  • Zheng Li & Jiping Lu & Ya Zhu & Wang Jiang, 2017. "Ground-Fault Characteristic Analysis of Grid-Connected Photovoltaic Stations with Neutral Grounding Resistance," Energies, MDPI, vol. 10(11), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1910-:d:119653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Das, Soubhagya K. & Verma, Deepak & Nema, Savita & Nema, R.K., 2017. "Shading mitigation techniques: State-of-the-art in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 369-390.
    2. Bana, Sangram & Saini, R.P., 2017. "Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios," Energy, Elsevier, vol. 127(C), pages 438-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiyuan Liu & Kehan Xu & Zhe Zhang & Wei Liu & Jianyong Ao, 2019. "Research on Theoretical Calculation Methods of Photovoltaic Power Short-Circuit Current and Influencing Factors of Its Fault Characteristics," Energies, MDPI, vol. 12(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. J. C. Teo & Rodney H. G. Tan & V. H. Mok & Vigna K. Ramachandaramurthy & ChiaKwang Tan, 2018. "Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String," Energies, MDPI, vol. 11(7), pages 1-22, July.
    3. Liu, Ruimiao & Liu, Zhongbing & Xiong, Wei & Zhang, Ling & Zhao, Chengliang & Yin, Yingde, 2024. "Performance simulation and optimization of building façade photovoltaic systems under different urban building layouts," Energy, Elsevier, vol. 288(C).
    4. Ahmed Al Mansur & Md. Ruhul Amin & Molla Shahadat Hossain Lipu & Md. Imamul Islam & Ratil H. Ashique & Zubaeer Bin Shams & Mohammad Asif ul Haq & Md. Hasan Maruf & ASM Shihavuddin, 2023. "The Effects of Non-Uniformly-Aged Photovoltaic Array on Mismatch Power Loss: A Practical Investigation towards Novel Hybrid Array Configurations," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    5. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    6. Ramez Abdallah & Adel Juaidi & Salameh Abdel-Fattah & Mahmoud Qadi & Montaser Shadid & Aiman Albatayneh & Hüseyin Çamur & Amos García-Cruz & Francisco Manzano-Agugliaro, 2022. "The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine," Energies, MDPI, vol. 15(12), pages 1-18, June.
    7. Kostas Sinapis & Konstantinos Tsatsakis & Maarten Dörenkämper & Wilfried G. J. H. M. van Sark, 2021. "Evaluation and Analysis of Selective Deployment of Power Optimizers for Residential PV Systems," Energies, MDPI, vol. 14(4), pages 1-15, February.
    8. Fathy, Ahmed & Elaziz, Mohamed Abd & Sayed, Enas Taha & Olabi, A.G. & Rezk, Hegazy, 2019. "Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm," Energy, Elsevier, vol. 188(C).
    9. Reddy, S. Sreekantha & Yammani, Chandrasekhar, 2020. "Odd-Even-Prime pattern for PV array to increase power output under partial shading conditions," Energy, Elsevier, vol. 213(C).
    10. Belqasem Aljafari & Rupendra Kumar Pachauri & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2023. "Innovative Methodologies for Higher Global MPP of Photovoltaic Arrays under PSCs: Experimental Validation," Sustainability, MDPI, vol. 15(15), pages 1-28, August.
    11. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    12. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    13. Shen, Yu & He, Zengxiang & Xu, Zhen & Wang, Yiye & Li, Chenxi & Zhang, Jinxia & Zhang, Kanjian & Wei, Haikun, 2022. "Modeling of photovoltaic modules under common shading conditions," Energy, Elsevier, vol. 256(C).
    14. Evaldo Chagas Gouvêa & Thais Santos Castro & Teófilo Miguel de Souza, 2024. "Performance Analysis of Interconnection and Differential Power Processing Techniques under Partial Shading Conditions," Energies, MDPI, vol. 17(13), pages 1-19, July.
    15. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    16. Teo, J.C. & Tan, Rodney H.G. & Mok, V.H. & Ramachandaramurthy, Vigna K. & Tan, ChiaKwang, 2020. "Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 191(C).
    17. Krishna, G.Sai & Moger, Tukaram, 2019. "Enhancement of maximum power output through reconfiguration techniques under non-uniform irradiance conditions," Energy, Elsevier, vol. 187(C).
    18. Carlos Andres Ramos-Paja & Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez, 2018. "Sliding-Mode Control of Distributed Maximum Power Point Tracking Converters Featuring Overvoltage Protection," Energies, MDPI, vol. 11(9), pages 1-40, August.
    19. Vinaya Chandrakant Chavan & Suresh Mikkili & Tomonobu Senjyu, 2022. "Hardware Implementation of Novel Shade Dispersion PV Reconfiguration Technique to Enhance Maximum Power under Partial Shading Conditions," Energies, MDPI, vol. 15(10), pages 1-16, May.
    20. Refaat, Ahmed & Osman, Mohamed Hassan & Korovkin, Nikolay V., 2020. "Current collector optimizer topology to extract maximum power from non-uniform aged PV array," Energy, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1910-:d:119653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.