IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1748-d117213.html
   My bibliography  Save this article

A Review of Lithium-Air Battery Modeling Studies

Author

Listed:
  • Kisoo Yoo

    (School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea)

  • Soumik Banerjee

    (School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA)

  • Jonghoon Kim

    (Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea)

  • Prashanta Dutta

    (School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA)

Abstract

Li-air batteries have attracted interest as energy storage devices due to their high energy and power density. Li-air batteries are expected to revolutionize the automobile industry (for use in electric and hybrid vehicles) and electrochemical energy storage systems by surpassing the energy capacities of conventional Li-ion batteries. However, the practical implementation of Li-air batteries is still hindered by many challenges, such as low cyclic performance and high charging voltage, resulting from oxygen transport limitations, electrolyte degradation, and the formation of irreversible reduction products. Therefore, various methodologies have been attempted to mitigate the issues causing performance degradation of Li-air batteries. Among myriad studies, theoretical and numerical modeling are powerful tools for describing and investigating the chemical reactions, reactive ion transportation, and electrical performance of batteries. Herein, we review the various multi-physics/scale models used to provide mechanistic insights into processes in Li-air batteries and relate these to overall battery performance. First, continuum-based models describing ion transport, pore blocking phenomena, and reduction product precipitation are presented. Next, atomistic modeling-based studies that provide an understanding of the reaction mechanisms in oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as well as ion–ion interactions in the electrolyte, are described.

Suggested Citation

  • Kisoo Yoo & Soumik Banerjee & Jonghoon Kim & Prashanta Dutta, 2017. "A Review of Lithium-Air Battery Modeling Studies," Energies, MDPI, vol. 10(11), pages 1-42, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1748-:d:117213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1748/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1748/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shichao Wu & Yu Qiao & Sixie Yang & Masayoshi Ishida & Ping He & Haoshen Zhou, 2017. "Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    2. Li, Xianglin & Huang, Jing & Faghri, Amir, 2015. "Modeling study of a Li–O2 battery with an active cathode," Energy, Elsevier, vol. 81(C), pages 489-500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Pengjie & Liu, Xuejun & Luo, Kaiyao & Li, Hongkun & Wang, Yun, 2021. "Deep learning from three-dimensional multiphysics simulation in operational optimization and control of polymer electrolyte membrane fuel cell for maximum power," Applied Energy, Elsevier, vol. 288(C).
    2. Hayat, K. & Vega, L.F. & AlHajaj, A., 2022. "What have we learned by multiscale models on improving the cathode storage capacity of Li-air batteries? Recent advances and remaining challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Jiashu & Zhu, Yongming & Gao, Jian & Li, Wantang, 2015. "Electrochemical performance of mixed carbon material with waterproof membrane for lithium air battery in the ambient atmosphere," Energy, Elsevier, vol. 89(C), pages 84-91.
    2. Ren, Y.X. & Zhao, T.S. & Tan, P. & Wei, Z.H. & Zhou, X.L., 2017. "Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions," Applied Energy, Elsevier, vol. 187(C), pages 706-716.
    3. Tang, Michael & Chang, Jia-Cheng & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2019. "Glyme-based electrolyte formulation analysis in aprotic lithium-oxygen battery and its cyclic stability," Energy, Elsevier, vol. 187(C).
    4. Berrueta, Alberto & Urtasun, Andoni & Ursúa, Alfredo & Sanchis, Pablo, 2018. "A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model," Energy, Elsevier, vol. 144(C), pages 286-300.
    5. Ye, Luhan & Wang, Xiaoning & Lv, Weiqiang & Fei, Jipeng & Zhu, Gaolong & Liang, Yachun & Song, Yuanqiang & Zhai, Junyi & He, Weidong, 2015. "Analytical insight into the oxygen diffusion in wetted porous cathodes of Li-air batteries," Energy, Elsevier, vol. 93(P1), pages 416-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1748-:d:117213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.