IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v9y2021i4p43-d694969.html
   My bibliography  Save this article

Climate Finance: Mapping Air Pollution and Finance Market in Time Series

Author

Listed:
  • Zheng Fang

    (Department of Econometrics and Business Statistics, Monash University, Clayton, VIC 3800, Australia
    Current address: Department of Data Science and Artificial Intelligence, Monash University, Clayton, VIC 3800, Australia.
    These authors contributed equally to this work.)

  • Jianying Xie

    (Department of Econometrics and Business Statistics, Monash University, Clayton, VIC 3800, Australia
    These authors contributed equally to this work.)

  • Ruiming Peng

    (Department of Econometrics and Business Statistics, Monash University, Clayton, VIC 3800, Australia
    These authors contributed equally to this work.)

  • Sheng Wang

    (Department of Econometrics and Business Statistics, Monash University, Clayton, VIC 3800, Australia
    These authors contributed equally to this work.)

Abstract

Climate finance is growing popular in addressing challenges of climate change because it controls the funding and resources to emission entities and promotes green manufacturing. In this study, we determined that PM 2.5 , PM 10 , SO 2 , NO 2 , CO, and O 3 are the target pollutant in the atmosphere and we use a deep neural network to enhance the regression analysis in order to investigate the relationship between air pollution and stock prices of the targeted manufacturer. We also conduct time series analysis based on air pollution and heavy industry manufacturing in China, as the country is facing serious air pollution problems. Our study uses Convolutional-Long Short Term Memory in 2 Dimension (ConvLSTM2D) to extract the features from air pollution and enhance the time series regression in the financial market. The main contribution in our paper is discovering a feature term that impacts the stock price in the financial market, particularly for the companies that are highly impacted by the local environment. We offer a higher accurate model than the traditional time series in the stock price prediction by considering the environmental factor. The experimental results suggest that there is a negative linear relationship between air pollution and the stock market, which demonstrates that air pollution has a negative effect on the financial market. It promotes the manufacturer’s improving their emission recycling and encourages them to invest in green manufacture—otherwise, the drop in stock price will impact the company funding process.

Suggested Citation

  • Zheng Fang & Jianying Xie & Ruiming Peng & Sheng Wang, 2021. "Climate Finance: Mapping Air Pollution and Finance Market in Time Series," Econometrics, MDPI, vol. 9(4), pages 1-15, December.
  • Handle: RePEc:gam:jecnmx:v:9:y:2021:i:4:p:43-:d:694969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/9/4/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/9/4/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
    2. Sidra Mehtab & Jaydip Sen, 2020. "A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models," Papers 2004.11697, arXiv.org, revised May 2021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goshu Desalegn & Anita Tangl, 2022. "Developing Countries in the Lead: A Bibliometric Approach to Green Finance," Energies, MDPI, vol. 15(12), pages 1-19, June.
    2. Goshu Desalegn & Anita Tangl, 2022. "Enhancing Green Finance for Inclusive Green Growth: A Systematic Approach," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    3. Gu, Leilei & Peng, Yuchao & Vigne, Samuel A. & Wang, Yizhi, 2023. "Hidden costs of non-green performance? The impact of air pollution awareness on loan rates for Chinese firms," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 233-250.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    2. Jaydip Sen & Ashwin Kumar R S & Geetha Joseph & Kaushik Muthukrishnan & Koushik Tulasi & Praveen Varukolu, 2022. "Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market," Papers 2201.05570, arXiv.org.
    3. Axelsson, Birger & Song, Han-Suck, 2023. "Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model," Working Paper Series 23/10, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance, revised 14 Nov 2023.
    4. Jaydip Sen & Hetvi Waghela & Sneha Rakshit, 2024. "Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning," Papers 2407.01572, arXiv.org.
    5. Vásquez Sáenz, Javier & Quiroga, Facundo Manuel & Bariviera, Aurelio F., 2023. "Data vs. information: Using clustering techniques to enhance stock returns forecasting," International Review of Financial Analysis, Elsevier, vol. 88(C).
    6. Abdullahi Osman Ali & Jama Mohamed, 2022. "The optimal forecast model for consumer price index of Puntland State, Somalia," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4549-4572, December.
    7. Alebachew Abebe & Aboma Temesgen & Belete Kebede, 2023. "Modeling inflation rate factors on present consumption price index in Ethiopia: threshold autoregressive models approach," Future Business Journal, Springer, vol. 9(1), pages 1-12, December.
    8. Muhammad Nadim Hanif & Muhammad Jahanzeb Malik, 2015. "Evaluating the Performance of Inflation Forecasting Models of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 43-78.
    9. Berthine Nyunga Mpinda & Jules Sadefo-Kamdem & Salomey Osei & Jeremiah Fadugba, 2021. "Accuracies of Model Risks in Finance using Machine Learning," Working Papers hal-03191437, HAL.
    10. Huicheng Liu, 2018. "Leveraging Financial News for Stock Trend Prediction with Attention-Based Recurrent Neural Network," Papers 1811.06173, arXiv.org.
    11. Paraskevas Panagiotidis & Andrew Effraimis & George A Xydis, 2019. "An R-based forecasting approach for efficient demand response strategies in autonomous micro-grids," Energy & Environment, , vol. 30(1), pages 63-80, February.
    12. Meftah Elsaraiti & Adel Merabet, 2021. "A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for Predicting Wind Speed," Energies, MDPI, vol. 14(20), pages 1-16, October.
    13. Yoojeong Song & Jae Won Lee & Jongwoo Lee, 2022. "Development of Intelligent Stock Trading System Using Pattern Independent Predictor and Turning Point Matrix," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 27-38, January.
    14. Sehrish Kayani & Usman Ayub & Imran Abbas Jadoon, 2019. "Adaptive Market Hypothesis and Artificial Neural Networks: Evidence from Pakistan," Global Regional Review, Humanity Only, vol. 4(2), pages 190-203, June.
    15. Gourav Kumar & Uday Pratap Singh & Sanjeev Jain, 2022. "Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 991-1039, October.
    16. Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
    17. Lin, Yu & Yan, Yan & Xu, Jiali & Liao, Ying & Ma, Feng, 2021. "Forecasting stock index price using the CEEMDAN-LSTM model," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    18. Seung Hwan Jeong & Hee Soo Lee & Hyun Nam & Kyong Joo Oh, 2021. "Using a Genetic Algorithm to Build a Volume Weighted Average Price Model in a Stock Market," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    19. Nicole Koenigstein, 2022. "Dynamic and Context-Dependent Stock Price Prediction Using Attention Modules and News Sentiment," Papers 2205.01639, arXiv.org.
    20. Raehyun Kim & Chan Ho So & Minbyul Jeong & Sanghoon Lee & Jinkyu Kim & Jaewoo Kang, 2019. "HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction," Papers 1908.07999, arXiv.org, revised Nov 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:9:y:2021:i:4:p:43-:d:694969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.