IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v11y2023i1p8-d1090337.html
   My bibliography  Save this article

Semi-Metric Portfolio Optimization: A New Algorithm Reducing Simultaneous Asset Shocks

Author

Listed:
  • Nick James

    (School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
    These authors contributed equally to this work.)

  • Max Menzies

    (Beijing Institute of Mathematical Sciences and Applications, Tsinghua University, Beijing 101408, China
    These authors contributed equally to this work.)

  • Jennifer Chan

    (School of Mathematics and Statistics, University of Sydney, Camperdown, NSW 2006, Australia)

Abstract

This paper proposes a new method for financial portfolio optimization based on reducing simultaneous asset shocks across a collection of assets. This may be understood as an alternative approach to risk reduction in a portfolio based on a new mathematical quantity. First, we apply recently introduced semi-metrics between finite sets to determine the distance between time series’ structural breaks. Then, we build on the classical portfolio optimization theory of Markowitz and use this distance between asset structural breaks for our penalty function, rather than portfolio variance. Our experiments are promising: on synthetic data, we show that our proposed method does indeed diversify among time series with highly similar structural breaks and enjoys advantages over existing metrics between sets. On real data, experiments illustrate that our proposed optimization method performs well relative to nine other commonly used options, producing the second-highest returns, the lowest volatility, and second-lowest drawdown. The main implication for this method in portfolio management is reducing simultaneous asset shocks and potentially sharp associated drawdowns during periods of highly similar structural breaks, such as a market crisis. Our method adds to a considerable literature of portfolio optimization techniques in econometrics and could complement these via portfolio averaging.

Suggested Citation

  • Nick James & Max Menzies & Jennifer Chan, 2023. "Semi-Metric Portfolio Optimization: A New Algorithm Reducing Simultaneous Asset Shocks," Econometrics, MDPI, vol. 11(1), pages 1-33, March.
  • Handle: RePEc:gam:jecnmx:v:11:y:2023:i:1:p:8-:d:1090337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/11/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/11/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur A. B. Pessa & Matjaz Perc & Haroldo V. Ribeiro, 2023. "Age and market capitalization drive large price variations of cryptocurrencies," Papers 2302.12319, arXiv.org.
    2. Hussein Khraibani & Bilal Nehme & Olivier Strauss, 2018. "Interval Estimation of Value-at-Risk Based on Nonparametric Models," Econometrics, MDPI, vol. 6(4), pages 1-30, December.
    3. Enrique Ballestero, 2005. "Mean-Semivariance Efficient Frontier: A Downside Risk Model for Portfolio Selection," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 1-15.
    4. Ross, Gordon J., 2015. "Parametric and Nonparametric Sequential Change Detection in R: The cpm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i03).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Nick James & Max Menzies, 2023. "An exploration of the mathematical structure and behavioural biases of 21st century financial crises," Papers 2307.15402, arXiv.org, revised Sep 2023.
    3. James, Nick & Menzies, Max, 2023. "An exploration of the mathematical structure and behavioural biases of 21st century financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    5. Nick James & Max Menzies, 2023. "Collective dynamics, diversification and optimal portfolio construction for cryptocurrencies," Papers 2304.08902, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felici, Marco & Kenny, Geoff & Friz, Roberta, 2023. "Consumer savings behaviour at low and negative interest rates," European Economic Review, Elsevier, vol. 157(C).
    2. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    3. Duc Hong Vo, 2021. "Portfolio Optimization and Diversification in China: Policy Implications for Vietnam and Other Emerging Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(1), pages 223-238, January.
    4. Park, Beum-Jo, 2022. "The COVID-19 pandemic, volatility, and trading behavior in the bitcoin futures market," Research in International Business and Finance, Elsevier, vol. 59(C).
    5. Francisco Salas-Molina & David Pla-Santamaria & Juan A. Rodriguez-Aguilar, 2018. "A multi-objective approach to the cash management problem," Annals of Operations Research, Springer, vol. 267(1), pages 515-529, August.
    6. Arman Abgaryan & Utkarsh Sharma & Joshua Tobkin, 2024. "Proof of Efficient Liquidity: A Staking Mechanism for Capital Efficient Liquidity," Papers 2401.04521, arXiv.org, revised Feb 2024.
    7. Andreas Anastasiou & Piotr Fryzlewicz, 2022. "Detecting multiple generalized change-points by isolating single ones," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 141-174, February.
    8. Arjun Prakash & Nick James & Max Menzies & Gilad Francis, 2020. "Structural clustering of volatility regimes for dynamic trading strategies," Papers 2004.09963, arXiv.org, revised Nov 2021.
    9. Ballestero, E. & Gunther, M. & Pla-Santamaria, D. & Stummer, C., 2007. "Portfolio selection under strict uncertainty: A multi-criteria methodology and its application to the Frankfurt and Vienna Stock Exchanges," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1476-1487, September.
    10. Marco Corazza & Giovanni Fasano & Riccardo Gusso, 2011. "Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem," Working Papers 2011_10, Department of Economics, University of Venice "Ca' Foscari".
    11. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    12. Corbet, Shaen & Lucey, Brian & Peat, Maurice & Vigne, Samuel, 2018. "Bitcoin Futures—What use are they?," Economics Letters, Elsevier, vol. 172(C), pages 23-27.
    13. James, Nick & Menzies, Max & Chan, Jennifer, 2021. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    14. Cumova, Denisa & Nawrocki, David, 2011. "A symmetric LPM model for heuristic mean-semivariance analysis," Journal of Economics and Business, Elsevier, vol. 63(3), pages 217-236, May.
    15. Sebastian, Steffen P. & Steininger, Bertram I., 2021. "Real estate ETNs in strategic asset allocation," Working Paper Series 21/8, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance.
    16. James, Nick, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    17. Baolong Ying & Qijing Yan & Zehua Chen & Jinchao Du, 2024. "A sequential feature selection approach to change point detection in mean-shift change point models," Statistical Papers, Springer, vol. 65(6), pages 3893-3915, August.
    18. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    19. Gian Luca Vriz & Luigi Grossi, 2024. "Green bubbles: a four-stage paradigm for detection and propagation," Papers 2410.06564, arXiv.org.
    20. Ballestero, Enrique & Bravo, Mila & Pérez-Gladish, Blanca & Arenas-Parra, Mar & Plà-Santamaria, David, 2012. "Socially Responsible Investment: A multicriteria approach to portfolio selection combining ethical and financial objectives," European Journal of Operational Research, Elsevier, vol. 216(2), pages 487-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:11:y:2023:i:1:p:8-:d:1090337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.