IDEAS home Printed from https://ideas.repec.org/a/eee/jebusi/v63y2011i3p217-236.html
   My bibliography  Save this article

A symmetric LPM model for heuristic mean-semivariance analysis

Author

Listed:
  • Cumova, Denisa
  • Nawrocki, David

Abstract

While the semivariance (lower partial moment degree 2) has been variously described as being more in line with investors' attitude towards risk, implementation in a forecasting portfolio management role has been hampered by computational problems. The original formulation by Markowitz (1959) requires a laborious iterative process because the cosemivariance matrix is endogenous and a closed form solution does not exist. There have been attempts at optimizing an exogenous asymmetric cosemivariance matrix. However, this approach does not always provide a positive semi-definite matrix for which a closed form solution exists. We provide a proof that converts the exogenous asymmetric matrix to a symmetric matrix for which a closed form solution does exist. This approach allows the mean-semivariance formulation to be solved using Markowitz's critical line algorithm. Empirical results compare the cosemivariance algorithm to the covariance algorithm which is currently the best optimization proxy for the cosemivariance. We also compare our formulation to Estrada's (2008) cosemivariance formulation. The results demonstrate that the cosemivariance algorithm is robust to a 45 security universe and is still effective at increasing portfolio skewness at a 150 security universe. There are four major benefits to a usable mean-semivariance formulation: (1) managers may engineer skewness into the portfolio without resorting to option strategies, (2) managers will be able to evaluate the skewness effect of option strategies within their portfolio, (3) a workable mean-semivariance algorithm leads to a workable n-degree lower partial moment (LPM) algorithms which provides managers access to a wider variety of investor utility functions including risk averse, risk neutral, and risk seeking utility functions, and (4) a workable LPM algorithm leads to a workable UPM/LPM (upper partial moment/lower partial moment) algorithm.

Suggested Citation

  • Cumova, Denisa & Nawrocki, David, 2011. "A symmetric LPM model for heuristic mean-semivariance analysis," Journal of Economics and Business, Elsevier, vol. 63(3), pages 217-236, May.
  • Handle: RePEc:eee:jebusi:v:63:y:2011:i:3:p:217-236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148-6195(11)00013-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. James Hueng & Ruey Yau, 2006. "Investor preferences and portfolio selection: is diversification an appropriate strategy?," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 255-271.
    2. Post, G.T. & van Vliet, P. & Lansdorp, S.D., 2009. "Sorting out Downside Beta," ERIM Report Series Research in Management ERS-2009-006-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Hogan, William W. & Warren, James M., 1972. "Computation of the Efficient Boundary in the E-S Portfolio Selection Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1881-1896, September.
    4. Bawa, Vijay S. & Lindenberg, Eric B., 1977. "Abstract: Capital Market Equilibrium in a Mean-Lower Partial Moment Framework," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 635-635, November.
    5. Andrew Ang & Joseph Chen & Yuhang Xing, 2006. "Downside Risk," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1191-1239.
      • Andrew Ang & Joseph Chen & Yuhang Xing, 2005. "Downside risk," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
    6. Hogan, William W. & Warren, James M., 1974. "Toward the Development of an Equilibrium Capital-Market Model Based on Semivariance," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 9(1), pages 1-11, January.
    7. Simkowitz, Michael A. & Beedles, William L., 1978. "Diversification in a Three-Moment World," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(5), pages 927-941, December.
    8. Holthausen, Duncan M, 1981. "A Risk-Return Model with Risk and Return Measured as Deviations from a Target Return," American Economic Review, American Economic Association, vol. 71(1), pages 182-188, March.
    9. Enrique Ballestero, 2005. "Mean-Semivariance Efficient Frontier: A Downside Risk Model for Portfolio Selection," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 1-15.
    10. Ang, James S., 1975. "A Note on the E, SL Portfolio Selection Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 10(5), pages 849-857, December.
    11. Elton, Edwin J & Gruber, Martin J & Padberg, Manfred W, 1976. "Simple Criteria for Optimal Portfolio Selection," Journal of Finance, American Finance Association, vol. 31(5), pages 1341-1357, December.
    12. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    13. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    14. Harlow, W. V. & Rao, Ramesh K. S., 1989. "Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(3), pages 285-311, September.
    15. Hanqing Jin & Harry Markowitz & Xun Yu Zhou, 2006. "A Note On Semivariance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 53-61, January.
    16. Bawa, Vijay S. & Lindenberg, Eric B., 1977. "Capital market equilibrium in a mean-lower partial moment framework," Journal of Financial Economics, Elsevier, vol. 5(2), pages 189-200, November.
    17. Grootveld, Henk & Hallerbach, Winfried, 1999. "Variance vs downside risk: Is there really that much difference?," European Journal of Operational Research, Elsevier, vol. 114(2), pages 304-319, April.
    18. Ang, James S. & Chua, Jess H., 1979. "Composite Measures for the Evaluation of Investment Performance," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 14(2), pages 361-384, June.
    19. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhangxin (Frank) Liu & Michael J. O'Neill, 2018. "Partial moment volatility indices," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(1), pages 195-215, March.
    2. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    3. León, Angel & Moreno, Manuel, 2017. "One-sided performance measures under Gram-Charlier distributions," Journal of Banking & Finance, Elsevier, vol. 74(C), pages 38-50.
    4. Cumova, Denisa & Nawrocki, David, 2014. "Portfolio optimization in an upside potential and downside risk framework," Journal of Economics and Business, Elsevier, vol. 71(C), pages 68-89.
    5. León, Ángel & Moreno, Manuel, 2015. "Lower Partial Moments under Gram Charlier Distribution: Performance Measures and Efficient Frontiers," QM&ET Working Papers 15-3, University of Alicante, D. Quantitative Methods and Economic Theory.
    6. Ayub, Usman & Shah, Syed Zulfiqar Ali & Abbas, Qaisar, 2015. "Robust analysis for downside risk in portfolio management for a volatile stock market," Economic Modelling, Elsevier, vol. 44(C), pages 86-96.
    7. Massimiliano Kaucic & Mojtaba Moradi & Mohmmad Mirzazadeh, 2019. "Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cumova, Denisa & Nawrocki, David, 2014. "Portfolio optimization in an upside potential and downside risk framework," Journal of Economics and Business, Elsevier, vol. 71(C), pages 68-89.
    2. Ayub, Usman & Shah, Syed Zulfiqar Ali & Abbas, Qaisar, 2015. "Robust analysis for downside risk in portfolio management for a volatile stock market," Economic Modelling, Elsevier, vol. 44(C), pages 86-96.
    3. Anthonisz, Sean A., 2012. "Asset pricing with partial-moments," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2122-2135.
    4. Zhangxin (Frank) Liu & Michael J. O'Neill, 2018. "Partial moment volatility indices," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(1), pages 195-215, March.
    5. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    6. Beach, Steven L., 2011. "Semivariance decomposition of country-level returns," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 607-623, October.
    7. León, Ángel & Moreno, Manuel, 2015. "Lower Partial Moments under Gram Charlier Distribution: Performance Measures and Efficient Frontiers," QM&ET Working Papers 15-3, University of Alicante, D. Quantitative Methods and Economic Theory.
    8. Fulga, Cristinca, 2016. "Portfolio optimization under loss aversion," European Journal of Operational Research, Elsevier, vol. 251(1), pages 310-322.
    9. Brogan, Anita J. & Stidham Jr., Shaler, 2008. "Non-separation in the mean-lower-partial-moment portfolio optimization problem," European Journal of Operational Research, Elsevier, vol. 184(2), pages 701-710, January.
    10. León, Angel & Moreno, Manuel, 2017. "One-sided performance measures under Gram-Charlier distributions," Journal of Banking & Finance, Elsevier, vol. 74(C), pages 38-50.
    11. Robert Jarrow & Feng Zhao, 2006. "Downside Loss Aversion and Portfolio Management," Management Science, INFORMS, vol. 52(4), pages 558-566, April.
    12. Javier Estrada, 2009. "The Gain‐Loss Spread: A New and Intuitive Measure of Risk," Journal of Applied Corporate Finance, Morgan Stanley, vol. 21(4), pages 104-114, September.
    13. Pedersen, Christian S., 2000. "Separating risk and return in the CAPM: A general utility-based model," European Journal of Operational Research, Elsevier, vol. 123(3), pages 628-639, June.
    14. Grootveld, Henk & Hallerbach, Winfried, 1999. "Variance vs downside risk: Is there really that much difference?," European Journal of Operational Research, Elsevier, vol. 114(2), pages 304-319, April.
    15. Javed Iqbal & Sara Azher, 2014. "Value-at-Risk and Expected Stock Returns: Evidence from Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 19(2), pages 71-100, July-Dec.
    16. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Efficient skewness/semivariance portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 331-346, September.
    17. Tamara Ajrapetova, 2018. "Cross-Section of Asset Returns: Emerging Markets and Market Integration," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2018(1), pages 41-60.
    18. Sean A. Anthonisz & Tālis J. Putniņš, 2017. "Asset Pricing with Downside Liquidity Risks," Management Science, INFORMS, vol. 63(8), pages 2549-2572, August.
    19. Botshekan, Mahmoud & Kraeussl, Roman & Lucas, Andre, 2012. "Cash Flow and Discount Rate Risk in Up and Down Markets: What Is Actually Priced?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(6), pages 1279-1301, December.
    20. Gumsong Jo & Hyokil Kim & Hoyong Kim & Gyongho Ri, 2024. "Fuzzy Portfolio Selection Using Stochastic Correlation," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1493-1509, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jebusi:v:63:y:2011:i:3:p:217-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-economics-and-business .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.