IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v3y2012i2p153-182d19343.html
   My bibliography  Save this article

Resilience, Sustainability and Risk Management: A Focus on Energy

Author

Listed:
  • Benjamin McLellan

    (Graduate School of Energy Science, Kyoto University, Yoshida honmachi, Sakyo-ku, Kyoto 606-8501, Japan)

  • Qi Zhang

    (Graduate School of Energy Science, Kyoto University, Yoshida honmachi, Sakyo-ku, Kyoto 606-8501, Japan)

  • Hooman Farzaneh

    (Graduate School of Energy Science, Kyoto University, Yoshida honmachi, Sakyo-ku, Kyoto 606-8501, Japan)

  • N. Agya Utama

    (Graduate School of Energy Science, Kyoto University, Yoshida honmachi, Sakyo-ku, Kyoto 606-8501, Japan)

  • Keiichi N. Ishihara

    (Graduate School of Energy Science, Kyoto University, Yoshida honmachi, Sakyo-ku, Kyoto 606-8501, Japan)

Abstract

The natural and subsequent human disasters of March 11, 2011 in Japan have brought into focus more than ever the importance of resilience and risk mitigation in the construction of energy infrastructure. This article introduces some of the critical issues and discusses the implications of energy in alleviating or exacerbating the risks of natural disasters. Additionally, it presents a framework for considering the risks of energy systems from a broad perspective. The connection is drawn between design for sustainability and the risks associated with energy systems in natural disasters. As a result of the assessment, six criteria are proposed for energy systems to contribute to societal resilience in the face of natural disasters—they should be: (1) Continuous; (2) Robust; (3) Independent; (4) Controllable; (5) Non-hazardous; and (6) Matched to demand.

Suggested Citation

  • Benjamin McLellan & Qi Zhang & Hooman Farzaneh & N. Agya Utama & Keiichi N. Ishihara, 2012. "Resilience, Sustainability and Risk Management: A Focus on Energy," Challenges, MDPI, vol. 3(2), pages 1-30, August.
  • Handle: RePEc:gam:jchals:v:3:y:2012:i:2:p:153-182:d:19343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/3/2/153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/3/2/153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    2. Burgherr, Peter & Hirschberg, Stefan, 2008. "Severe accident risks in fossil energy chains: A comparative analysis," Energy, Elsevier, vol. 33(4), pages 538-553.
    3. Gaddis, Erica Brown & Miles, Brian & Morse, Stephanie & Lewis, Debby, 2007. "Full-cost accounting of coastal disasters in the United States: Implications for planning and preparedness," Ecological Economics, Elsevier, vol. 63(2-3), pages 307-318, August.
    4. Molyneaux, Lynette & Wagner, Liam & Froome, Craig & Foster, John, 2012. "Resilience and electricity systems: A comparative analysis," Energy Policy, Elsevier, vol. 47(C), pages 188-201.
    5. Lior, Noam, 2012. "Sustainable energy development (May 2011) with some game-changers," Energy, Elsevier, vol. 40(1), pages 3-18.
    6. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    7. Coaffee, Jon, 2008. "Risk, resilience, and environmentally sustainable cities," Energy Policy, Elsevier, vol. 36(12), pages 4633-4638, December.
    8. O'Brien, Geoff & Hope, Alex, 2010. "Localism and energy: Negotiating approaches to embedding resilience in energy systems," Energy Policy, Elsevier, vol. 38(12), pages 7550-7558, December.
    9. Lee, Shun-Chung & Shih, Li-Hsing, 2011. "Enhancing renewable and sustainable energy development based on an options-based policy evaluation framework: Case study of wind energy technology in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2185-2198, June.
    10. Branscomb, Lewis M., 2006. "Sustainable cities: Safety and security," Technology in Society, Elsevier, vol. 28(1), pages 225-234.
    11. Schmidt, J. & Schönhart, M. & Biberacher, M. & Guggenberger, T. & Hausl, S. & Kalt, G. & Leduc, S. & Schardinger, I. & Schmid, E., 2012. "Regional energy autarky: Potentials, costs and consequences for an Austrian region," Energy Policy, Elsevier, vol. 47(C), pages 211-221.
    12. del Río, Pablo & Burguillo, Mercedes, 2009. "An empirical analysis of the impact of renewable energy deployment on local sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1314-1325, August.
    13. Afgan, Naim H. & Gobaisi, Darwish Al & Carvalho, Maria G. & Cumo, Maurizio, 1998. "Sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(3), pages 235-286, September.
    14. Li, Y. & Yang, Z.F., 2011. "Quantifying the sustainability of water use systems: Calculating the balance between network efficiency and resilience," Ecological Modelling, Elsevier, vol. 222(10), pages 1771-1780.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pin Li & Jinsuo Zhang, 2023. "China’s Inter-Provincial Energy Security Resilience Assessment over Space and Time: An Improved Gray Relational Projection Model," Energies, MDPI, vol. 16(7), pages 1-22, March.
    2. Sara Meerow & Joshua P. Newell, 2015. "Resilience and Complexity: A Bibliometric Review and Prospects for Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 236-251, April.
    3. Sena, Kenton & Ochuodho, Thomas O. & Agyeman, Domena A. & Contreras, Marco & Niman, Chad & Eaton, Dan & Yang, Jian, 2022. "Wood bioenergy for rural energy resilience: Suitable site selection and potential economic impacts in Appalachian Kentucky," Forest Policy and Economics, Elsevier, vol. 145(C).
    4. Hui-Tzu Huang & Rüdiger Glaser, 2021. "Participatory Impetus for and Forms of Citizens’ Co-Owned Power Plants: Cases from Higashi-Ohmi, Japan," Energies, MDPI, vol. 14(7), pages 1-26, March.
    5. Kikuchi, Yasunori & Kimura, Seiichiro & Okamoto, Yoshitaka & Koyama, Michihisa, 2014. "A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options," Applied Energy, Elsevier, vol. 132(C), pages 586-601.
    6. Romano Wyss & Susan Mühlemeier & Claudia R. Binder, 2018. "An Indicator-Based Approach for Analysing the Resilience of Transitions for Energy Regions. Part II: Empirical Application to the Case of Weiz-Gleisdorf, Austria," Energies, MDPI, vol. 11(9), pages 1-21, August.
    7. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.
    8. Shunichi Hienuki, 2017. "Environmental and Socio-Economic Analysis of Naphtha Reforming Hydrogen Energy Using Input-Output Tables: A Case Study from Japan," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    9. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    10. Vivek Arulnathan & Mohammad Davoud Heidari & Maurice Doyon & Eric P. H. Li & Nathan Pelletier, 2022. "Economic Indicators for Life Cycle Sustainability Assessment: Going beyond Life Cycle Costing," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    11. Olga Orynycz & Antoni Świć, 2018. "The Effects of Material’s Transport on Various Steps of Production System on Energetic Efficiency of Biodiesel Production," Sustainability, MDPI, vol. 10(8), pages 1-12, August.
    12. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    13. Alejandro Lara & Felipe Bucci & Cristobal Palma & Juan Munizaga & Victor Montre-Águila, 2021. "Development, urban planning and political decisions. A triad that built territories at risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1935-1957, November.
    14. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    15. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    16. Zaijing Gong & Dapeng Liang, 2017. "A resilience framework for safety management of fossil fuel power plant," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1081-1095, December.
    17. Andrea A. Eras-Almeida & Tatiana Vásquez-Hernández & Merlyn Johanna Hurtado-Moncada & Miguel A. Egido-Aguilera, 2023. "A Comprehensive Evaluation of Off-Grid Photovoltaic Experiences in Non-Interconnected Zones of Colombia: Integrating a Sustainable Perspective," Energies, MDPI, vol. 16(5), pages 1-27, February.
    18. Gatto, Andrea & Drago, Carlo, 2020. "Measuring and modeling energy resilience," Ecological Economics, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    2. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    3. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    4. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    5. Stelios Grafakos & Elena Marie Enseñado & Alexandros Flamos & Jan Rotmans, 2015. "Mapping and Measuring European Local Governments’ Priorities for a Sustainable and Low-Carbon Energy Future," Energies, MDPI, vol. 8(10), pages 1-26, October.
    6. Müller, Matthias Otto & Stämpfli, Adrian & Dold, Ursula & Hammer, Thomas, 2011. "Energy autarky: A conceptual framework for sustainable regional development," Energy Policy, Elsevier, vol. 39(10), pages 5800-5810, October.
    7. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    8. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    9. Manel Kamoun & Ines Abdelkafi & Abdelfetah Ghorbel, 2019. "The Impact of Renewable Energy on Sustainable Growth: Evidence from a Panel of OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(1), pages 221-237, March.
    10. Ulaa AlHaddad & Abdullah Basuhail & Maher Khemakhem & Fathy Elbouraey Eassa & Kamal Jambi, 2023. "Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    11. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
    12. Walker, Sara Louise & Hope, Alex & Bentley, Edward, 2014. "Modelling steady state performance of a local electricity distribution system under UK 2050 carbon pathway scenarios," Energy, Elsevier, vol. 78(C), pages 604-621.
    13. Leslie Gillespie‐Marthaler & Katherine Nelson & Hiba Baroud & Mark Abkowitz, 2019. "Selecting Indicators for Assessing Community Sustainable Resilience," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2479-2498, November.
    14. Sanya Carley & Richard Andrews, 2012. "Creating a sustainable U.S. electricity sector: the question of scale," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 97-121, June.
    15. Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.
    16. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.
    17. Thomas Sauer & Stephanie Barnebeck & Yannick Kalff & Judith Schicklinski, 2015. "ROCSET – The Role of Cities in the Socio-Ecological Transition of Europe. WWWforEurope Working Paper No. 93," WIFO Studies, WIFO, number 58134, March.
    18. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2015. "Energy import resilience with input–output linear programming models," Energy Economics, Elsevier, vol. 50(C), pages 215-226.
    19. Zaijing Gong & Dapeng Liang, 2017. "A resilience framework for safety management of fossil fuel power plant," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1081-1095, December.
    20. Eitan, Avri & Herman, Lior & Fischhendler, Itay & Rosen, Gillad, 2019. "Community–private sector partnerships in renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 95-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:3:y:2012:i:2:p:153-182:d:19343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.