IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v4y2013i2p201-216d28576.html
   My bibliography  Save this article

Getting Smart? Climate Change and the Electric Grid

Author

Listed:
  • Jennie C. Stephens

    (Environmental Science and Policy, Clark University-IDCE, 950 Main Street, Worcester, MA 01610, USA)

  • Elizabeth J. Wilson

    (Humphrey School of Public Affairs, University of Minnesota, 301 19th Ave South, Minneapolis, MN 55455, USA)

  • Tarla R. Peterson

    (Department of Wildlife & Fisheries Sciences, Texas A&M University, TAMU-2258, College Station, TX 77843, USA)

  • James Meadowcroft

    (School of Public Policy and Administration, Carleton University, Ottawa, ON K1S 5B6, Canada)

Abstract

Interest in the potential of smart grid to transform the way societies generate, distribute, and use electricity has increased dramatically over the past decade. A smarter grid could contribute to both climate change mitigation and adaptation by increasing low-carbon electricity production and enhancing system reliability and resilience. However, climate goals are not necessarily essential for smart grid. Climate change is only one of many considerations motivating innovation in electricity systems, and depending on the path of grid modernization, a future smart grid might do little to reduce, or could even exacerbate, risks associated with climate change. This paper identifies tensions within a shared smart grid vision and illustrates how competing societal priorities are influencing electricity system innovation. Co-existing but divergent priorities among key actors’ are mapped across two critical dimensions: centralized versus decentralized energy systems and radical versus incremental change. Understanding these tensions provides insights on how climate change objectives can be integrated to shape smart grid development. Electricity system change is context-specific and path-dependent, so specific strategies linking smart grid and climate change need to be developed at local, regional, and national levels. And while incremental improvements may bring short term gains, a radical transformation is needed to realize climate objectives.

Suggested Citation

  • Jennie C. Stephens & Elizabeth J. Wilson & Tarla R. Peterson & James Meadowcroft, 2013. "Getting Smart? Climate Change and the Electric Grid," Challenges, MDPI, vol. 4(2), pages 1-16, September.
  • Handle: RePEc:gam:jchals:v:4:y:2013:i:2:p:201-216:d:28576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/4/2/201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/4/2/201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles Edquist, 2004. "Reflections on the systems of innovation approach," Science and Public Policy, Oxford University Press, vol. 31(6), pages 485-489, December.
    2. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    3. Marilyn A. Brown & Shan Zhou, 2013. "Smart-grid policies: an international review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(2), pages 121-139, March.
    4. Emma Marris, 2008. "Energy: Upgrading the grid," Nature, Nature, vol. 454(7204), pages 570-573, July.
    5. Munson, Richard, 2005. "From Edison to Enron," The Electricity Journal, Elsevier, vol. 18(9), pages 51-61, November.
    6. Mah, Daphne Ngar-yin & van der Vleuten, Johannes Marinus & Hills, Peter & Tao, Julia, 2012. "Consumer perceptions of smart grid development: Results of a Hong Kong survey and policy implications," Energy Policy, Elsevier, vol. 49(C), pages 204-216.
    7. Krishnamurti, Tamar & Schwartz, Daniel & Davis, Alexander & Fischhoff, Baruch & de Bruin, Wändi Bruine & Lave, Lester & Wang, Jack, 2012. "Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters," Energy Policy, Elsevier, vol. 41(C), pages 790-797.
    8. Martino Tran & David Banister & Justin D. K. Bishop & Malcolm D. McCulloch, 2012. "Realizing the electric-vehicle revolution," Nature Climate Change, Nature, vol. 2(5), pages 328-333, May.
    9. Carlota Perez, 2002. "Technological Revolutions and Financial Capital," Books, Edward Elgar Publishing, number 2640.
    10. Giordano, Vincenzo & Fulli, Gianluca, 2012. "A business case for Smart Grid technologies: A systemic perspective," Energy Policy, Elsevier, vol. 40(C), pages 252-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emily M. Cody & Jennie C. Stephens & James P. Bagrow & Peter Sheridan Dodds & Christopher M. Danforth, 2017. "Transitions in climate and energy discourse between Hurricanes Katrina and Sandy," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(1), pages 87-101, March.
    2. Sarah Niklas & Dani Alexander & Scott Dwyer, 2022. "Resilient Buildings and Distributed Energy: A Grassroots Community Response to the Climate Emergency," Sustainability, MDPI, vol. 14(6), pages 1-32, March.
    3. Katharina Reindl & Carl Dalhammar & Emma Brodén, 2024. "Circular Economy Integration in Smart Grids: A Nexus for Sustainability," Circular Economy and Sustainability, Springer, vol. 4(3), pages 2119-2145, September.
    4. Siddharth Sareen, 2020. "Social and technical differentiation in smart meter rollout: embedded scalar biases in automating Norwegian and Portuguese energy infrastructure," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-8, December.
    5. Karlson Hargroves & Benjamin James & Joshua Lane & Peter Newman, 2023. "The Role of Distributed Energy Resources and Associated Business Models in the Decentralised Energy Transition: A Review," Energies, MDPI, vol. 16(10), pages 1-15, May.
    6. Tolga Kara & Ahmet Duran Şahin, 2023. "Implications of Climate Change on Wind Energy Potential," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    7. Grégoire-Zawilski, Myriam & Popp, David, 2024. "Do technology standards induce innovation in environmental technologies when coordination is important?," Research Policy, Elsevier, vol. 53(1).
    8. Naus, Joeri & Spaargaren, Gert & van Vliet, Bas J.M. & van der Horst, Hilje M., 2014. "Smart grids, information flows and emerging domestic energy practices," Energy Policy, Elsevier, vol. 68(C), pages 436-446.
    9. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    2. Lin, Chen-Chun & Yang, Chia-Han & Shyua, Joseph Z., 2013. "A comparison of innovation policy in the smart grid industry across the pacific: China and the USA," Energy Policy, Elsevier, vol. 57(C), pages 119-132.
    3. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    4. Rita Strohmaier & Marlies Schuetz & Simone Vannuccini, 2019. "A systemic perspective on socioeconomic transformation in the digital age," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(3), pages 361-378, September.
    5. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    6. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    7. Künneke, Rolf & Groenewegen, John & Ménard, Claude, 2010. "Aligning modes of organization with technology: Critical transactions in the reform of infrastructures," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 494-505, September.
    8. Frank W. Geels, 2013. "The Impact of the Financial and Economic Crisis on Sustainability Transitions: Financial Investment, Governance and Public Discourse. WWWforEurope Working Paper No. 39," WIFO Studies, WIFO, number 47014.
    9. Fagerberg, Jan, 2018. "Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy," Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
    10. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    11. Aurelie Tricoire, 2015. "Uncertainty, vision, and the vitality of the emerging smart grid," Post-Print hal-02351994, HAL.
    12. Schot, Johan & Kanger, Laur, 2018. "Deep transitions: Emergence, acceleration, stabilization and directionality," Research Policy, Elsevier, vol. 47(6), pages 1045-1059.
    13. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    14. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    15. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    16. Johnstone, Phil & McLeish, Caitriona, 2022. "World wars and sociotechnical change in energy, food, and transport: A deep transitions perspective," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    17. Tsvetanov, Tsvetan, 2022. "The deterring effect of monetary costs on smart meter adoption," Applied Energy, Elsevier, vol. 318(C).
    18. Rob Roggema, 2020. "Planning for the Energy Transition and How to Overcome the Misfits of the Current Paradigm," World, MDPI, vol. 1(3), pages 1-19, November.
    19. Mann, Carsten & Loft, Lasse & Hernández-Morcillo, Mónica, 2021. "Assessing forest governance innovations in Europe: Needs, challenges and ways forward for sustainable forest ecosystem service provision," Ecosystem Services, Elsevier, vol. 52(C).
    20. Johan Schot & Laur Kanger, 2016. "Deep Transitions: Emergence, Acceleration, Stabilization and Directionality," SPRU Working Paper Series 2016-15, SPRU - Science Policy Research Unit, University of Sussex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:4:y:2013:i:2:p:201-216:d:28576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.