IDEAS home Printed from https://ideas.repec.org/a/gam/jworld/v1y2020i3p19-282d451174.html
   My bibliography  Save this article

Planning for the Energy Transition and How to Overcome the Misfits of the Current Paradigm

Author

Listed:
  • Rob Roggema

    (Research Centre for the Built Environment NoorderRuimte, School of Architecture and Built Environment, Hanze University of Applied Sciences Groningen, 9704 AA Groningen, The Netherlands)

Abstract

The current paradigm for planning an energy transition is often embedded in practices within the existing political and societal regime. Within this paradigm, a genuine transformation to a fully fossil-free future is often not achieved. Thus, the problem is that in order to arrive at such a newly conceived future, the concepts and solutions created need to be fundamentally different from practices in recent past and present. At the same time, the community is not prepared for big changes, and the unknown future is experienced as uncertain and undesirable. These two mechanisms perpetuate current practices and prevent a new future from emerging. In this article, we will demonstrate how these two movements can be connected to disrupt incremental and path-dependent development, allowing people to become visionary and co-design a transformative future with innovative concepts. The Dutch Groningen region is used as an illustrative example for realising fundamental shifts supported by a bottom-up engagement process.

Suggested Citation

  • Rob Roggema, 2020. "Planning for the Energy Transition and How to Overcome the Misfits of the Current Paradigm," World, MDPI, vol. 1(3), pages 1-19, November.
  • Handle: RePEc:gam:jworld:v:1:y:2020:i:3:p:19-282:d:451174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-4060/1/3/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-4060/1/3/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    2. Horstmann, Britta, 2008. "Framing adaptation to climate change: a challenge for building institutions," IDOS Discussion Papers 23/2008, German Institute of Development and Sustainability (IDOS).
    3. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    4. Mario Biggeri & Enrico Testi & Marco Bellucci, 2017. "Enabling Ecosystems for Social Enterprises and Social Innovation: A Capability Approach Perspective," Journal of Human Development and Capabilities, Taylor & Francis Journals, vol. 18(2), pages 299-306, April.
    5. Carlota Perez, 2002. "Technological Revolutions and Financial Capital," Books, Edward Elgar Publishing, number 2640, December.
    6. Rob Roggema & Tim Vermeend & Andy Van den Dobbelsteen, 2012. "Incremental Change, Transition or Transformation? Optimising Change Pathways for Climate Adaptation in Spatial Planning," Sustainability, MDPI, vol. 4(10), pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
    2. Fagerberg, Jan, 2018. "Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy," Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
    3. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.
    4. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    5. Jenkins, Kirsten & Sovacool, Benjamin K. & McCauley, Darren, 2018. "Humanizing sociotechnical transitions through energy justice: An ethical framework for global transformative change," Energy Policy, Elsevier, vol. 117(C), pages 66-74.
    6. Johan Schot & Laur Kanger, 2016. "Deep Transitions: Emergence, Acceleration, Stabilization and Directionality," SPRU Working Paper Series 2016-15, SPRU - Science Policy Research Unit, University of Sussex Business School.
    7. Geddes, Anna & Schmidt, Tobias S., 2020. "Integrating finance into the multi-level perspective: Technology niche-finance regime interactions and financial policy interventions," Research Policy, Elsevier, vol. 49(6).
    8. Weber, Karl Matthias & Giesecke, Susanne & Havas, Attila & Schartinger, Doris & Albiez, Andreas & Horak, Sophia & Blind, Knut & Bodenheimer, Miriam & Daimer, Stephanie & Shi, Liu & Stadler, Maria & Sc, 2024. "Social innovation: (accompanying) instrument for addressing societal challenges?," Studien zum deutschen Innovationssystem 10-2024, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    9. Frank W. Geels, 2013. "The Impact of the Financial and Economic Crisis on Sustainability Transitions: Financial Investment, Governance and Public Discourse. WWWforEurope Working Paper No. 39," WIFO Studies, WIFO, number 47014, February.
    10. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    11. Wiegand, Julia, 2017. "Dezentrale Stromerzeugung als Chance zur Stärkung der Energie-Resilienz: Eine qualitative Analyse kommunaler Strategien im Raum Unna," Wuppertaler Studienarbeiten zur nachhaltigen Entwicklung, Wuppertal Institute for Climate, Environment and Energy, volume 11, number 11.
    12. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    13. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    14. Pradeep Racherla & Munir Mandviwalla, 2013. "Moving from Access to Use of the Information Infrastructure: A Multilevel Sociotechnical Framework," Information Systems Research, INFORMS, vol. 24(3), pages 709-730, September.
    15. Colvin, John & Blackmore, Chris & Chimbuya, Sam & Collins, Kevin & Dent, Mark & Goss, John & Ison, Ray & Roggero, Pier Paolo & Seddaiu, Giovanna, 2014. "In search of systemic innovation for sustainable development: A design praxis emerging from a decade of social learning inquiry," Research Policy, Elsevier, vol. 43(4), pages 760-771.
    16. Tiia-Lotta Pekkanen, 2021. "Institutions and Agency in the Sustainability of Day-to-Day Consumption Practices: An Institutional Ethnographic Study," Journal of Business Ethics, Springer, vol. 168(2), pages 241-260, January.
    17. Rita Strohmaier & Marlies Schuetz & Simone Vannuccini, 2019. "A systemic perspective on socioeconomic transformation in the digital age," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(3), pages 361-378, September.
    18. Lee, Junmin & Kim, Keungoui & Kim, Jiyong & Hwang, Junseok, 2022. "The relationship between shared mobility and regulation in South Korea: A system dynamics approach from the socio-technical transitions perspective," Technovation, Elsevier, vol. 109(C).
    19. Künneke, Rolf & Groenewegen, John & Ménard, Claude, 2010. "Aligning modes of organization with technology: Critical transactions in the reform of infrastructures," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 494-505, September.
    20. Nina Savela & Jarkko Levänen & Sara Lindeman & Nnenesi Kgabi & Heikki Koivisto & Meri Olenius & Samuel John & Damas Mashauri & Minna M. Keinänen-Toivola, 2020. "Rapid Urbanization and Infrastructure Pressure: Comparing the Sustainability Transition Potential of Water and Energy Regimes in Namibia," World, MDPI, vol. 1(2), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jworld:v:1:y:2020:i:3:p:19-282:d:451174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.