IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v13y2022i2p41-d900430.html
   My bibliography  Save this article

Zoonotic Spillover in an Era of Rapid Deforestation of Tropical Areas and Unprecedented Wildlife Trafficking: Into the Wild

Author

Listed:
  • Yusuf Amuda Tajudeen

    (Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria)

  • Iyiola Olatunji Oladunjoye

    (Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria)

  • Ousman Bajinka

    (Department of Microbiology, Central South University Changsha, P.M.B. 932, Lushan S Road, Changsha 410017, China)

  • Habeebullah Jayeola Oladipo

    (Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
    Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria)

Abstract

Rapid deforestation and unprecedented wildlife trafficking are important factors triggering the rate of zoonotic spillover from animals to humans. Consequently, this leads to the emergence and re-emergence of zoonotic infectious diseases among the human population. Deforestation is an important ecological disruption that leads to the loss of biodiversity. The loss of biodiversity results in the persistence of highest-quality hosts of zoonotic pathogens dominating the low-diversity communities, a process termed the dilution effect. Activities like intensive farming and logging that resulted in deforestation bring vulnerable people in close contact with these highest-quality reservoir hosts (wildlife). As a result of this vulnerability, there is an increased risk of spillover, leading to zoonotic infection in humans and eventually disease outbreaks during human–human transmission. One prominent example of a disease of wildlife origin is the ongoing SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2), even though the original source has not been found. Another important factor facilitating the risk of spillover and emergence of zoonotic infectious diseases is wildlife trafficking. This involves illegal hunting and trading of wildlife and their products, which increases the risk of spillover as a result of exchange of bodily fluids and bloodmeals between humans and wildlife during the hunting and butchering of animals’ carcasses. Consequently, little or no hygiene protocol and poor handling practices during the wildlife-trade chain expose poachers, consumers, and local market sellers to the risk of zoonotic diseases. Despite the interventions on deforestation-induced spillover and wildlife trafficking-associated spillover, there are still knowledge and research gaps that need to be addressed towards preventing the outbreaks of future zoonotic infectious diseases. In response to this, there is a need for interdisciplinary and intersectoral collaborations among researchers from various fields as well as sectors in minimizing the risk of zoonotic spillover driven by deforestation and wildlife trafficking at the human–animal–environmental nexus. In addition, there is a need for integrated and unified evidence-based policy formulation that puts an end to deforestation and wildlife trafficking, especially in tropical areas such as Africa and Asia.

Suggested Citation

  • Yusuf Amuda Tajudeen & Iyiola Olatunji Oladunjoye & Ousman Bajinka & Habeebullah Jayeola Oladipo, 2022. "Zoonotic Spillover in an Era of Rapid Deforestation of Tropical Areas and Unprecedented Wildlife Trafficking: Into the Wild," Challenges, MDPI, vol. 13(2), pages 1-8, August.
  • Handle: RePEc:gam:jchals:v:13:y:2022:i:2:p:41-:d:900430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/13/2/41/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/13/2/41/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 588(7836), pages 6-6, December.
    2. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 579(7798), pages 270-273, March.
    3. Yusuf Amuda Tajudeen & Habeebullah Jayeola Oladipo & Rashidat Onyinoyi Yusuf & Iyiola Olatunji Oladunjoye & Aminat Olaitan Adebayo & Abdulhakeem Funsho Ahmed & Mona Said El-Sherbini, 2022. "The Need to Prioritize Prevention of Viral Spillover in the Anthropopandemicene: A Message to Global Health Researchers and Policymakers," Challenges, MDPI, vol. 13(2), pages 1-9, August.
    4. Tommy Tsan-Yuk Lam & Na Jia & Ya-Wei Zhang & Marcus Ho-Hin Shum & Jia-Fu Jiang & Hua-Chen Zhu & Yi-Gang Tong & Yong-Xia Shi & Xue-Bing Ni & Yun-Shi Liao & Wen-Juan Li & Bao-Gui Jiang & Wei Wei & Ting-, 2020. "Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins," Nature, Nature, vol. 583(7815), pages 282-285, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusuf Amuda Tajudeen & Habeebullah Jayeola Oladipo & Iyiola Olatunji Oladunjoye & Mutiat Oluwakemi Mustapha & Sheriff Taye Mustapha & Adam Aberi Abdullahi & Rashidat Onyinoyi Yusuf & Samuel Olushola A, 2022. "Preventing the Next Pandemic through a Planetary Health Approach: A Focus on Key Drivers of Zoonosis," Challenges, MDPI, vol. 13(2), pages 1-14, September.
    2. Habeebullah Jayeola Oladipo & Yusuf Amuda Tajudeen & Iyiola Olatunji Oladunjoye & Sheriff Taye Mustapha & Yusuff Inaolaji Sodiq & Rashidat Onyinoyi Yusuf & Oluwaseyi Muyiwa Egbewande & Abdulbasit Opey, 2023. "Adopting a Statistical, Mechanistic, Integrated Surveillance, Thermal Biology, and Holistic (SMITH) Approach for Arbovirus Control in a Changing Climate: A Review of Evidence," Challenges, MDPI, vol. 14(1), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Fabian Zech & Daniel Schniertshauer & Christoph Jung & Alexandra Herrmann & Arne Cordsmeier & Qinya Xie & Rayhane Nchioua & Caterina Prelli Bozzo & Meta Volcic & Lennart Koepke & Janis A. Müller & Jan, 2021. "Spike residue 403 affects binding of coronavirus spikes to human ACE2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Ovidiu Tița & Maria Adelina Constantinescu & Mihaela Adriana Tița & Cecilia Georgescu, 2020. "Use of Yoghurt Enhanced with Volatile Plant Oils Encapsulated in Sodium Alginate to Increase the Human Body’s Immunity in the Present Fight Against Stress," IJERPH, MDPI, vol. 17(20), pages 1-17, October.
    4. Wenjuan Du & Oliver Debski-Antoniak & Dubravka Drabek & Rien Haperen & Melissa Dortmondt & Joline Lee & Ieva Drulyte & Frank J. M. Kuppeveld & Frank Grosveld & Daniel L. Hurdiss & Berend-Jan Bosch, 2024. "Neutralizing antibodies reveal cryptic vulnerabilities and interdomain crosstalk in the porcine deltacoronavirus spike protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Daniel N. Streblow & Alec J. Hirsch & Jeffrey J. Stanton & Anne D. Lewis & Lois Colgin & Ann J. Hessell & Craig N. Kreklywich & Jessica L. Smith & William F. Sutton & David Chauvin & Jennifer Woo & Be, 2023. "Aerosol delivery of SARS-CoV-2 human monoclonal antibodies in macaques limits viral replication and lung pathology," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Zepeng Xu & Xinrui Kang & Pu Han & Pei Du & Linjie Li & Anqi Zheng & Chuxia Deng & Jianxun Qi & Xin Zhao & Qihui Wang & Kefang Liu & George Fu Gao, 2022. "Binding and structural basis of equine ACE2 to RBDs from SARS-CoV, SARS-CoV-2 and related coronaviruses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Dongsheng Chen & Jian Sun & Jiacheng Zhu & Xiangning Ding & Tianming Lan & Xiran Wang & Weiying Wu & Zhihua Ou & Linnan Zhu & Peiwen Ding & Haoyu Wang & Lihua Luo & Rong Xiang & Xiaoling Wang & Jiayin, 2021. "Single cell atlas for 11 non-model mammals, reptiles and birds," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    8. Shahadat Uddin & Arif Khan & Haohui Lu & Fangyu Zhou & Shakir Karim, 2022. "Suburban Road Networks to Explore COVID-19 Vulnerability and Severity," IJERPH, MDPI, vol. 19(4), pages 1-9, February.
    9. Kirsten R.C. Hensgens & Inge H.T. van Rensen & Anita W. Lekx & Frits H.M. van Osch & Lieve H.H. Knarren & Caroline E. Wyers & Joop P. van den Bergh & Dennis G. Barten, 2021. "Sort and Sieve: Pre-Triage Screening of Patients with Suspected COVID-19 in the Emergency Department," IJERPH, MDPI, vol. 18(17), pages 1-11, September.
    10. Quan-Hoang Vuong & Tam-Tri Le & Viet-Phuong La & Huyen Thanh Thanh Nguyen & Manh-Toan Ho & Quy Khuc & Minh-Hoang Nguyen, 2022. "Covid-19 vaccines production and societal immunization under the serendipity-mindsponge-3D knowledge management theory and conceptual framework," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    11. Hengrui Liu & Sho Iketani & Arie Zask & Nisha Khanizeman & Eva Bednarova & Farhad Forouhar & Brandon Fowler & Seo Jung Hong & Hiroshi Mohri & Manoj S. Nair & Yaoxing Huang & Nicholas E. S. Tay & Sumin, 2022. "Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Graziella Orrù & Ciro Conversano & Eleonora Malloggi & Francesca Francesconi & Rebecca Ciacchini & Angelo Gemignani, 2020. "Neurological Complications of COVID-19 and Possible Neuroinvasion Pathways: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    13. Gleidson Sobreira Leite & Adriano Bessa Albuquerque & Plácido Rogerio Pinheiro, 2021. "Applications of Technological Solutions in Primary Ways of Preventing Transmission of Respiratory Infectious Diseases—A Systematic Literature Review," IJERPH, MDPI, vol. 18(20), pages 1-50, October.
    14. Britton Boras & Rhys M. Jones & Brandon J. Anson & Dan Arenson & Lisa Aschenbrenner & Malina A. Bakowski & Nathan Beutler & Joseph Binder & Emily Chen & Heather Eng & Holly Hammond & Jennifer Hammond , 2021. "Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    15. Susanne Kessler & Bradly Burke & Geoffroy Andrieux & Jan Schinköthe & Lea Hamberger & Johannes Kacza & Shijun Zhan & Clara Reasoner & Taru S. Dutt & Maria Kaukab Osman & Marcela Henao-Tamayo & Julian , 2024. "Deciphering bat influenza H18N11 infection dynamics in male Jamaican fruit bats on a single-cell level," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Yongzhu Xiong & Yunpeng Wang & Feng Chen & Mingyong Zhu, 2020. "Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China," IJERPH, MDPI, vol. 17(11), pages 1-26, May.
    17. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    18. Fabiana Fiasca & Mauro Minelli & Dominga Maio & Martina Minelli & Ilaria Vergallo & Stefano Necozione & Antonella Mattei, 2020. "Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO 2 : A Nationwide Observational Study in Italy," IJERPH, MDPI, vol. 17(24), pages 1-10, December.
    19. Małgorzata Dudzińska & Marta Gwiaździńska-Goraj & Aleksandra Jezierska-Thöle, 2022. "Social Factors as Major Determinants of Rural Development Variation for Predicting Epidemic Vulnerability: A Lesson for the Future," IJERPH, MDPI, vol. 19(21), pages 1-24, October.
    20. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:13:y:2022:i:2:p:41-:d:900430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.